期刊文献+

粒子滤波器在图像序列目标跟踪中的应用 被引量:7

Target Tracking Based on Image Sequence Using Particle Filter
下载PDF
导出
摘要 粒子滤波器是一种根据带有噪声的观测数据序列估计未知运动状态的技术,它主要用于非线性、非高斯的信号处理系统,它由状态转换模型和观测模型两个部分构成,其基本思想是用一组带权的粒子来表示随机变量的后验概率分布。该文中以图像序列运动目标的位置为未知运动状态变量,相邻两帧图像经过全局运动补偿后的差图像为观测数据,针对室内环境单个步行者的情况,提出了一种简单有效的基于运动检测的状态转换模型和观测模型。实验结果表明,该模型具有良好的跟踪性能。 Particle filter is an inference technique for estimating the motion state from a noisy collection of observations. Generally, it is used in nonlinear and nongaussian signal processing system. Two important components of this approach are state transition and observation models and the basic idea of it is that the posterior density is approximated by a set of discrete samples - particles. Given that the position of the moving target is the unknown motion state and the difference images by ego - motion compensation are the sequent!al sensor data, we build a simple motion model and observation model based on motion detection for a pedestrian in the environment indoors. The experiment results show that the algorithm performs well.
出处 《计算机仿真》 CSCD 2006年第1期184-186,287,共4页 Computer Simulation
关键词 粒子滤波器 图像序列目标跟踪 状态转换模型 观测模型 Particle filter Target tracking based on image sequence State transition model Observation model
  • 相关文献

参考文献6

  • 1张辉,王强,徐光祐,朱志刚.运动目标的快速检测、跟踪和判别[J].清华大学学报(自然科学版),2002,42(10):1401-1404. 被引量:25
  • 2N J Gordon,D J salmond and A F M Simth.Novel Approach to Nonlinear /Nonguassian Bayesian State Estimation[J].IEE PROCEEDINGS-F,April 1993,140(2).
  • 3M Isard,A Blake.Condensation-Conditional Density Propagation for Visual Tracking[J].Int.J.Computer Vision,1998,29(1):5-28.
  • 4Shaohua Kevin Zhou,Rama Chellappa,and Baback Moghaddam.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE TRANSACTION ON IMAGE PROCESSING,2004.
  • 5R Van der Merwe.A Doucet the Unscented Particle filter[M].Advanced in Neural Information Processing system,MIT,2000.
  • 6Carlo Tomasi and Takeo Kanade.Detection and Tracking of Point Features[R].Technical Report CMU-CS-91-132,Carnegie Mellon University,Pittsburgh,PA,April 1991.

二级参考文献1

共引文献24

同被引文献26

  • 1张根耀,赵西卿,朱菁.图像法识别运动目标技术[J].陕西师范大学学报(自然科学版),2002,30(S1):87-90. 被引量:9
  • 2彭宁嵩,杨杰,周大可,刘志.Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129. 被引量:23
  • 3桑爱军,宋建中.基于跟踪度的Gabor小波特征跟踪方法的研究[J].光学技术,2005,31(4):588-591. 被引量:5
  • 4彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 5侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 6SMYTH A, WU M. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring[ J]. Mechanical Systems and Signal Processing, 2007, 21(2): 706-723.
  • 7MILLS S, PRIDMORE T, HILLS M. Tracking in a Hough space with the extended Kalman filter [ C]//Proceedings of British Machine Vision Conference. [ S. l. ] : BMVA, 2003:173 - 182.
  • 8LI YUAN, AI HAIZHOU, HUANG CHANG, et al. Robust head tracking with particles based on multiple cues fusion [ EB/OL]. [ 2010 -04 -01 ]. http://www, springerlink, corn/content/ r77678vm5886p664/.
  • 9VERMAAK J, DOUCET A, P'EREZ P. Maintaining muhi-modality through mixture tracking [ C]// Proceedings of the Ninth IEEE Intemational Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2003:1110 - 1116.
  • 10WEI D, PIATER J. Tracking by cluster analysis of feature points u- sing a mixture particle filter[ C]//AVSS'05: Proceedings of the IEEE International Conference on Advanced Video and Signal based Surveillance. Washington, DC: IEEE Computer Society, 2005:165 -170.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部