摘要
利用在非对易可积torus(环)上的算子都有约化矩阵这一特点,孤子解的求解问题可以化为求满足代数方程Q(M)=0的有限维矩阵解问题.本文研究了当矩阵M不可对角化时的情形,分析这种情形,得到当势函数V(φ)具有三阶以上的极值点时,有限维矩阵方程V’(M)=0存在不可对角化的矩阵解.研究了这种解的一般形式,并通过kq表象,构造了非对易整环上以上述矩阵解为约化矩阵的新孤子解.根据这种构造方法,可以得到非对易orbifold上的新孤子解.
Besed on finite dimensional reduced matrices of operators on integral noncommutative torus, soliton solution problem can be converted into the finite matrix solution problem satisfying the algebraic equation Q(M)=0. In this paper, we mainly study the condition of reduced matrix for the operator which cannot be diagonalized. When the potential function V(φ) = 0 has an extremum point in three or more rank, there exist matrix solution that cannot be diagonalized for the finite dimensional matrix equation V’(M)=0. We study the general form of the solution and construct new soliton solution on noncommutative integral ring. In terms of the construction method, we obtain soliton solutions on noncommutative orbifold.
出处
《高能物理与核物理》
CSCD
北大核心
2006年第2期89-93,共5页
High Energy Physics and Nuclear Physics