摘要
本文提出了一种连续型前馈回归网络用于进行模拟值样本的联想记忆,网络的权值通过BP算法学习得到.用这种方法可以保证每个待记样本在可预先设计的凸域内是吸引的,并给出了一种球形吸引域的设计方法.为加深理解,文中给出了此种回归网与全连接动态网(Hopfield网)权值间的关系.
This paper presents a learning method for designing associative memories using recurrent feedforward neural networks which can also be implemented by fully interconnected recurrent neural networks attached on a linear output layer. This technique guarantees that desired memories are stored and are attractive over the prescribed domains. The learning method can be traced back to BP algorithm.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
1996年第2期186-193,共8页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金
关键词
联想记忆
回归网
权值设计
神经网络
Associative Memory, Sample. Recurrent Feedforward NN,Feedforward NN, Hopfield NN.BP Algorithm.