期刊文献+

带变量核的Littlewood-Paley算子 被引量:3

原文传递
导出
摘要 研究了一类方向Hilbert交换及其在某些混合范数空间上的有界性,作为应用之一,证明了带变量核的Littlewood-Paley算子的Lp有界性,这些结果是一些已知定理的推广。
出处 《中国科学(A辑)》 CSCD 北大核心 2006年第1期38-51,共14页 Science in China(Series A)
基金 国家重点基础研究发展规划 国家自然科学基金(批准号:10571156 10571015 10371043) 教育部博士点专项基金(批准号:20050027025)资助项目
  • 相关文献

参考文献13

  • 1Chen J,Fan D,Ying Y.Certain operators with singular kernels.Canadian Math J,2003,55:504-532.
  • 2Calderon A P Zygmund A.On existence of certain singular integrals.Acta Math,1952,88:85—139.
  • 3Calderon A P.Zygmund A.On singnlar integrals.Amer J Math,1956,78:289-309.
  • 4Calderon A P Zygmund A.On singular integral with variable kernels.Appl Anal,1978,7:221—238.
  • 5Christ M,Duoandikoetxea J,Rubio de Francia J L.Maximal operators related to the Radon transform and the Calderon-Zygmund method of rotations.Duke Math J,1986,53:189-208.
  • 6Chen J, Ding Y, Fan D. On a Hyper-Hilbert transform. Chinese Ann Math (B), 2003, 24:475-484.
  • 7Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton Univ Press, 1970.
  • 8Ding Y, Lin C, Shao S. On Marcinkiewicz integral with variable kernels. Indiana Univ Math Jour, 2004,53:805-822.
  • 9Ding Y, Fan D, Pan Y. Littlewood-Paley functions and singular integrals. Hokkaido Math J, 2000, 29:537-552.
  • 10Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971.

同被引文献18

  • 1XUE QingYing,DING Yong.Weighted estimates for the multilinear commutators of the Littlewood-Paley operators[J].Science China Mathematics,2009,52(9):1849-1868. 被引量:8
  • 2Lu Shanzhen and Yang Dachun (Beijing Normal University, China).THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS[J].Analysis in Theory and Applications,1995,11(3):72-94. 被引量:50
  • 3张璞,陈杰诚.一类带有变量核的积分算子在Herz型Hardy空间的有界性[J].数学年刊(A辑),2004,20(5):561-570. 被引量:12
  • 4SAKAMOTO M, YABUTA K. Boundedness of Marcinkieicz functions[J].Studia Math, 1999, 135:103-142.
  • 5DING Y, LIN C C, SHAO S. On the Marcinkiewicz integral with variable kemels[J].Indiana Univ Math J, 2004, 53:805- 821.
  • 6XUE Q Y, YABUTA K. L^2-Boundedness of Marcinkiewicz integrals along surfaces with variable kernels[ J]. Sci Math Japonicae, 2006, 63(3):369-382.
  • 7STEIN E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz[J].Trans Amer Math Soc, 1958, 88:430-466.
  • 8CALDERON A P, ZYGMUND A. On singular integral with variable kernels[J]. Appl Anal, 1978, 7:221-238.
  • 9DING Y, FAN D S, PAN Y B. Littlewood-Paley functins and singular integrals[J].Hokkaido Math J, 2000, 29:537-552.
  • 10CHEN J C, DING Y, FAN D S. A class of integral operators with variable kernels on Hardy spaces [J].Chinese Annals of Math(A), 2002, 23:289-296.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部