期刊文献+

用参照设计刻画最小附加混杂部分因析裂区设计 被引量:1

原文传递
导出
摘要 用参照设计刻画部分因析设计的特征对于构造近似饱和的因析设计是十分有效的,因为此时的参照设计很小.Mukerjee和方开泰利用投影几何理论将一个正规对称部分因析裂区(FFSP)设计的附加字长型用其补子集表示出来,然而其表示形式并不统一.基于因析设计理论和编码理论之间的联系,得到了联系一个正规对称或混合水平FFSP设计与其参照设计的附加字长型之间关系的一般而统一的组合等式,根据这些等式进一步建立了通过参照设计来识别最小附加混杂对称或混合水平FFSP设计的一般而统一的规则.
出处 《中国科学(A辑)》 CSCD 北大核心 2006年第1期52-71,共20页 Science in China(Series A)
基金 国家自然科学基金资助项目(批准号:10231030 10571093)
  • 相关文献

参考文献23

  • 1Fries A, Hunter W G. Minimum aberration 2^k-p designs. Technometrics, 1980, 26:225-232.
  • 2Chen J, Sun D X, Wu C F J. A catalogue of two-level and three-level fractional factorial designs with small runs. Internat Statist Rev, 1993, 61 ( 1 ): 131 - 145.
  • 3Tang B, Wu C F J. Characterization of minimum aberration 2^n-k designs in terms of their complementary designs. Ann Statist, 1996, 25:1176-1188.
  • 4Suen C Y, Chen H, Wu C F J. Some identities on q^n-m designs with application to minimum aberrations.Ann Statist, 1997, 25(3): 1176-1188.
  • 5Wu C F J, Zhang R C. Minimum aberration designs with two-level and four-level factors. Biometrika,1993, 80(1): 203-209.
  • 6Wu C F J, Zhang R C, Wang R G, Construction of asymmetrical orthogonal arrays of the type OA(8^k,(s^r 1)^n 1 ... (s^r t)^n t ). Statist Sinica, 1992, 2:203-219.
  • 7Zhang R C, Shao Q. Minimum aberration (s^2)s^n-k designs. Statist Sinica, 2001, 11:213-223.
  • 8Mukerjee R, Wu C F J. Minimum aberration designs for mixed Factorials in terms of complementary sets,Statist Sinica, 2001, 11 : 225-239.
  • 9Ai M Y. Zhang R C. Characterization of minimum aberration mixed factorials in terms of consulting designs, Statist Papers, 2004, 46(2): 157-171.
  • 10Chen H, Cheng C S. Theory of optimal blocking of 2^n-m designs, Ann Statist, 1999, 27(6): 1948- 1973.

二级参考文献17

  • 1Box G E E Jones S. Split-plot designs for robust product experimentation. J Appl Statist, 1992, 19:3-26.
  • 2Mukerjee R, Fang K T. Fractional factorial split-plot designs with minimum aberration and maximum estimation capacity. Statist Sinica, 2002, 12:885-903.
  • 3Huang P, Chen D, Voelkel J O. Minimum aberration two-level split-plot designs. Technometrics, 1998,40 (4): 314-326.
  • 4Fries A, Hunter W G. Minimum aberration 2^k-p designs. Technometrics, 1980, 22(4): 601-608.
  • 5Bingham D, Sitter R R. Minimum aberration two-level fractional factorial split-plot designs. Technometrics, 1999, 41(1): 62-70.
  • 6Bingham D, Sitter R R. Some theoretical results for fractional factorial split-plot designs. Ann Statist,1999, 27(4): 1240-1255.
  • 7Bingham D, Sitter R R. Design issues in fractional factorial split-plot experiments. J Quality Technology,2001, 33(1): 2-15.
  • 8Cheng C S, Steinberg D M, Sun D X. Minimum aberration and model robustness for two-level factorial designs. J Roy Statist Soc, Ser B, 1999, 61:85-93.
  • 9Cheng C S, Mukerjee R. Regular fractional factorial designs with minimum aberration and maximum estimation capacity. Ann Statist, 1998, 26:2289-2300.
  • 10Zhang R, Park D K. Optimal blocking of two-level fractional factorial designs. J Statist Plann Infer, 2000,91(1): 107-121.

共引文献1

同被引文献23

  • 1艾明要,何书元.部分因析裂区设计最优分区组的理论[J].中国科学(A辑),2005,35(3):265-272. 被引量:2
  • 2杨贵军,刘民千,张润楚.2_(IV)^(m-p)设计的弱最小低阶混杂与最多纯净两因子交互效应[J].中国科学(A辑),2005,35(9):1071-1080. 被引量:5
  • 3Wu C F J,Zhu Y.Optimal selection of single arrays for parameter design experiments.Statist Sinica,2003,13:1179-1199
  • 4Draper N R,Lin D K J.Capacity consideration for two-level fractional factorial designs.J Statist Plann Inference,1990,24:25-35
  • 5Cheng C S,Steinberg D M,Sun D X.Minimum aberration and model robustness for two-level fractional factorial designs.J Roy Statist Soc Ser B,1999,61:85-93
  • 6Box G E P,Hunter J S.The 2^k-p fractional factorial designs.Technometrics,1961,3:311-351,449-458
  • 7Fries A,Hunter W G.Minimum aberration 2^k-p designs.Technometrics,1980,22:601-608
  • 8Wu C F J,Chen Y.A graph-aided method for planning two-level experiments when certain interactions are important.Technometrics,1992,34:162-175
  • 9Chen J,Sun D X,Wu C F J.A catalogue of two-level and three-level fractional factorial designs with small runs Internat.Statist Rev,1993,61:131-145
  • 10Chen H,Hedayat A S.2^n-m designs with resolution Ⅲ or Ⅳ containing clear two-factor interactions.J Statist Plann Inference,1998,75:147-158

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部