交互作用流的超过程
摘要
提出一类新的超过程模型——交互作用流的超过程,这类超过程是 Dawson等提出的具有相依运动的超过程和马志明等提出的随机流的超过程的统一模型;给出了它的变尺度极限.
出处
《中国科学(A辑)》
CSCD
北大核心
2006年第1期84-108,共25页
Science in China(Series A)
参考文献16
-
1Dawson D A. Measure-valued Markov process. In: Hennequin P L, ed. Lect Notes Math, Vol 1541,Berlin: Springer-Verlag, 1993. 1-260.
-
2Dynkin E B. An Introduction to Branching Measure-valued Processes. Providence: Amer Math Soc, 1994.
-
3Le Gall J F. A class path-valued Markov processes and its applications to superprocesses. Probab Th Rel Fields, 1993, 95:25-46.
-
4Mytnik L. Superprocesses in random environments. Ann Probab, 1996, 24:1953-1978.
-
5Perkins E A. On the Martingale Problem for Interactive Measure-valued Branching Diffusions. Mem Amer Math Soc, Vol 115, No 549, Providence: Amer Math Soc, 1995.
-
6Walsh J B. An Introduction to Stochastic Partial Differential Equations. Lect Notes Math, Vol 1180.Berlin: Springer-Verlag, 1986.
-
7Dawson D A, Li Z H, Wang H. Superprocess with dependent spatial motion and general branching densities. Elect J Probab, 2001, 6(25).
-
8Chow P L. Fuction space differential equations associated with a stochastic partial differential equation.Indiana Univ Math J, 1976, 25:609-627.
-
9Dawson D A, Vaillancourt J. Stochastic Mckean-Vlasov equations. Nonlinear Diff Eq Appl, 1995, 2:199-229.
-
10Dawson D A, Vaillancourt J, Wang H. Stochastic partial differential equations for a class of measure-valued branching diffusions in a random medium. Ann Ins Heri Poincre, Probabilites and Statistiques,2000, 36:167-180.
-
1董从造.关于随机流上超过程的注记[J].北京师范大学学报(自然科学版),2010,46(5):560-564.
-
2袁成桂.有关对偶方程的充要条件[J].应用概率统计,1993,9(1):33-40.
-
3张新生.一般超过程的鞅刻化[J].数学物理学报(A辑),1994,14(2):223-230. 被引量:1
-
4王桂花,陈丽.超过程拼接与分支依赖人口总数的超过程[J].暨南大学学报(自然科学与医学版),2012,33(3):253-258.
-
5林清泉.鞅问题和BSDE弱解的存在性[J].中南民族学院学报(自然科学版),1996,15(2):36-40.
-
6何凯,曹桂兰.连续局部鞅的无穷维随机积分表示[J].华中科技大学学报(自然科学版),2006,34(1):122-124.
-
7向开南.(α,d,β)超过程Tanaka公式的注记[J].中国科学(A辑),2005,35(4):410-424.
-
8元昌安.随机微分方程弱解的稳定性和存在性[J].应用数学,1996,9(4):409-415. 被引量:1
-
9卢准炜.随机环境中的分枝过程[J].应用概率统计,1998,14(3):313-325. 被引量:8
-
10李育强.一类具有退化系数鞅问题解的唯一性[J].数学物理学报(A辑),2010,30(3):613-622.