期刊文献+

完全二部图存在路因子分解的Ushio猜想的证明 被引量:2

原文传递
导出
摘要 如果完全二部图Km,n的边集可以划分为Km,n的Pv-因子,则称Km,n 存在Pv-因子分解.当v是偶数时,Ushio和Wang给出了Km,n存在Pv-因子分解的充分必要条件.Ushio在其综述文章中提出了当v是奇数时Km,n存在Pv- 因子分解的猜想.已经证明当v=4k-1时Ushio猜想成立.对于正整数k,本文证明Km,n存在P4k+1-因子分解的充分必要条件是:(1)2km≤(2k+1)n,(2) 2kn≤(2k+1)m,(3)m+n≡0(mod 4k+1),(4)(4k+1)mn/[4k(m+n)]是整数.即证明:对于任何正整数k,当v=4k+1时Ushio猜想成立,从而最终完成了Ushio猜想成立的证明.
作者 杜北梁 王建
出处 《中国科学(A辑)》 CSCD 北大核心 2006年第1期109-120,共12页 Science in China(Series A)
基金 国家自然科学基金资助项目(批准号:10571133)
  • 相关文献

参考文献12

  • 1Ushio K. G-designs and related designs. Discrete Math, 1993, 116:299-311.
  • 2Bondy J A, Murty U S R. Graph Theory with Applications. London: Macmillan Press, 1976.
  • 3Yamamoto S, Ikeda H, Shige-eda S, et al. Design of a new balanced file organization scheme with the least redundancy, information and Control. 1975.28:156-175.
  • 4Yamamoto S, Tazawa S, Ushio K, et al. Design of a generalized balanced multiple-valued file organization scheme with the least redundancy. ACM Trans Database Systems, 1979, 4:518-530.
  • 5Ushio K, P3 factorization of complete bipartite graphs. Discrete Math, 1988, 72; 361-366.
  • 6Martin N. Complete bipartite factorisations by complete bipartite graphs. Discrete Math, 1997, 167 168:461 -480.
  • 7Du B L. K1,p^2-factorization of complete bipartite graphs, Discrete Math, 1998, 187:273-279.
  • 8Du B L, Wang J. K1,k-factorizations of complete bipartite graphs, Discrete Math, 2002, 259:301-306.
  • 9杜北梁,王建.完全二部图K_(m,n)的K_(p,q)-因子分解[J].中国科学(A辑),2004,34(2):237-242. 被引量:2
  • 10Wang H. P2k^-factorization of a complete bipartite graph. Discrete Math, 1993, 120:307-308.

二级参考文献21

  • 1Ushio K. G-designs and related designs. Discrete Math, 1993, 116:299-311.
  • 2Bondy J A, Murty U S R. Graph Theory with Applications. London: MacMillan Press, 1976.
  • 3Yamamoto S, lkeda H, Shige-eda S, et al. Design of a new balanced file organization scheme with the least redundancy. Information and Control, 1975, 28:156-175.
  • 4Yamamoto S, Tazawa S, Ushio K, et al. Design of a generalized balanced multiple-valued file organization scheme with the least redundancy. ACM Trans Database Systems, 1979, 4:518-530.
  • 5Ushio K.P3-factorization of complete bipartite graphs. Discrete Math, 1988, 72:361-366.
  • 6Martin N. Complete bipartite factorisations by complete bipartite graphs. Discrete Math, 1997, 167-168:461-480.
  • 7Du B L. K1,p^2 -factorization of complete bipartite graphs. Discrete Math, 1998, 187:273-279.
  • 8Du B L, Wang J. K1,k-factorizations of complete bipartite graphs. Discrete Math, 2002, 259:301-306.
  • 9Wang H. P2k-factorization of a complete bipartite graph. Discrete Math, 1993, 120:307-308.
  • 10Du B L. P2k-factorization of complete bipartite multigraphs. Austral J Combin, 2000, 21:197- 199.

共引文献3

同被引文献16

  • 1杜北梁,王建.完全二部图的P_(4k-1)-因子分解[J].中国科学(A辑),2005,35(2):206-215. 被引量:3
  • 2王建,杜北梁.二部多重图的P_(4k-1)-因子分解[J].中国科学(A辑),2006,36(8):928-937. 被引量:1
  • 3Ushio K.G-designs and related designs.Discrete Math,1993,116:299-311
  • 4Bondy J A,Murty U S R.Graph Theory with Applications.London Basingstoke:Macmillan Press,1976
  • 5Yamamoto S,Ikeda H,Shige-eda S,et al.Design of a new balanced file organization scheme with the least redundancy.Information and Control,1975,28:156-175
  • 6Wang H.P2k-factorization of a complete bipartite graph.Discrete Math,1993,120:307-308
  • 7Du B L.P2k-factorization of complete bipartite multigraphs.Austral.J.Combin,2000,21:197-199
  • 8Ushio K.P3-factorization of complete bipartite graphs.Discrete Math,1988,72:361-366
  • 9Wang J,Du B L.P3-factorization of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs.Utilitas Math,2003,63:213-228
  • 10Ushio K. G-designs and related designs. Discrete Math, 1993, 116:299-311.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部