期刊文献+

Design of smooth orthogonal wavelets with beautiful structure from 2-band to 4-band 被引量:1

Design of smooth orthogonal wavelets with beautiful structure from 2-band to 4-band
原文传递
导出
摘要 A complete algorithm to design 4-band orthogonal wavelets with beautiful structure from 2-band orthogonal wavelets is presented. For more smoothness, the conception of transfer vanishing moment is introduced by transplanting the requirements of vanishing moment from the 4-band wavelets to the 2-band ones. Consequently, the design of 4-band orthogonal wavelets with P vanishing moments and beautiful structure from 2-band ones with P transfer vanishing moments is completed. A complete algorithm to design 4-band orthogonal wavelets with beautiful structure from 2-band orthogonal wavelets is presented. For more smoothness, the conception of transfer vanishing moment is introduced by transplanting the requirements of vanishing moment from the 4-band wavelets to the 2-band ones. Consequently, the design of 4-band orthogonal wavelets with P vanishing moments and beautiful structure from 2-band ones with P transfer vanishing moments is completed.
机构地区 LMAM
出处 《Science in China(Series F)》 2006年第1期128-136,共9页 中国科学(F辑英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.10471002 and 90104004) the Major State Basic Research Development Program of China(Grant No.1999075105).
关键词 transfer vanishing moment 4-band wavelet system beautiful structure. transfer vanishing moment, 4-band wavelet system, beautiful structure.
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Daubechies, I., Orthonormal bases of compact supported wavelets, Comm. Pure and Appl. Math., 1988, 41:909-996.
  • 2[2]Daubechies, I., Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
  • 3[3]Steffen, P., Heller, P., Gopinath, R. A. et al., Theory of regular M-band wavelet bases, IEEE. Trans. on Signal Processing, 1993, 41:3497-3511.
  • 4[4]Chui, C., Lian, J. A., Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3, Appl. Comput. Harmon. Anal., 1995, 2: 68-84.
  • 5[5]Belogay, E., Wang, Y., Compactly supported orthogonal symmetric scaling functions, Appl. Comput. Harmon.Anal., 1999, 7: 137-150.
  • 6[6]Jawerth, B., Peng Lizhong, Compactly supported orthogonal wavelets on the Heisenberg group, Research report No. 45 (2001).
  • 7[7]Riemenschneider, S. D., Shen Zuowei, Wavelets and pre-wavelets in low dimensions, J. Approximation Theory,1992, 71: 18-38.
  • 8[8]Heller, P. N., Resnikoff, H. L, Wells, Jr. R. O., Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications, Cambridge, MA: Academic Press, 1992, 15-50.

共引文献8

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部