期刊文献+

Symmetric Positive Solutions for a Singular Second-Order Three-Point Boundary Value Problem 被引量:3

Symmetric Positive Solutions for a Singular Second-Order Three-Point Boundary Value Problem
原文传递
导出
摘要 In this paper, we consider the following second order three-point boundary value problem u″(t)+a(t)f(u(t))=0,0〈t〈1,u(0)-u(1)=0,u'(0)-u'(1)=u(1/2),where a : (0, 1) → [0, ∞) is symmetric on (0, 1) and may be singular at t = 0 and t = 1, f : [0, ∞) → [O, ∞) is continuous. By using Krasnoselskii's fixed point theorem ia a cone, we get some existence results of positive solutions for the problem. The associated Green's function for the three-point boundary value problem is also given. In this paper, we consider the following second order three-point boundary value problem u″(t)+a(t)f(u(t))=0,0〈t〈1,u(0)-u(1)=0,u'(0)-u'(1)=u(1/2),where a : (0, 1) → [0, ∞) is symmetric on (0, 1) and may be singular at t = 0 and t = 1, f : [0, ∞) → [O, ∞) is continuous. By using Krasnoselskii's fixed point theorem ia a cone, we get some existence results of positive solutions for the problem. The associated Green's function for the three-point boundary value problem is also given.
作者 Yong-ping Sun
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第1期65-74,共10页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10471075) National Natural Science Foundation of Shandong Province of China(No.Y2003A01) Foundation of Education Department of Zhejiang Province of China(No.20040495,No.20051897)
关键词 Symmetric positive solution three-point boundary value problem fixed point theorem EXISTENCE Symmetric positive solution, three-point boundary value problem, fixed point theorem, existence
  • 相关文献

参考文献18

  • 1Deimling, K. Noalinear functional analysis. Springer-Verlag, Berlin, 1985.
  • 2Feng, W., Webb, J.R.L. Solvability of a three-point boundary value problems at resonance. Nonlinear Anal., 30(6): 3227-3238 (1997).
  • 3Guo, D., Lakshmikantham, V.Nonlinear problems in abstract cones. Academic Press, Orlando, 1988.
  • 4Gupta, C.P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations. J. Math. Anal. Appl., 168(2): 540-551 (1992).
  • 5Gupta, C.P. A shaper condition for the solvability of a three-point second order boundary value problem.J. Math. Anal. Appl., 205(2): 586-597 (1997).
  • 6He, X., Ge, W. Triple solutions for second-order three-point boundary value problems. J. Math. Anal.Appl., 268(1): 256-265 (2002).
  • 7Henderson,J., Thompson, H.B. Multiple symmetric positive solutions for a second order boundary value problem. Proc. Amer. Math, Soc., 128(8): 2373-2379 (2000).
  • 8Infante, G. Eigenvalues of some non-local boundary value problems. Proc. Edinburgh Math. Soc., 46(1):75-86 (2003).
  • 9Infante, G., Webb, J.R.L. Nonzero solutions of Hammerstein integral equations with discontinuous kernels.J. Math. Anal. Appl., 272(1): 30-42 (2002).
  • 10Li, F., Zhang, Y. Multiple symmotric nonnegative solutions of second-order ordinary differential equations.Appl. Math. Letters, 17(1): 261-267 (2004).

同被引文献14

  • 1李淑红,张马彪.一类二阶三点边值问题正解的存在性[J].丽水学院学报,2004,26(5):1-5. 被引量:7
  • 2彭世国,朱思铭.泛函微分方程周期边值问题的正解[J].数学年刊(A辑),2005,26(3):419-426. 被引量:9
  • 3PengShiguo.POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEM FOR SECOND ORDER DIFFERENTIAL SYSTEMS[J].Annals of Differential Equations,2005,21(2):192-197. 被引量:1
  • 4Li Shuhong Sun Yongping Department of Mathematics, Lishui University, Lishui 323000,China,Department of Applied Mathematics, Zhejiang Sci-Tec University, Hangzhou 310018, China,Department of Electron and Information, Zhejiang University of Media and Communications, Hangzhou 310018, China..NONTRIVIAL SOLUTION OF A NONLINEAR SECOND-ORDER THREE-POINT BOUNDARY VALUE PROBLEM[J].Applied Mathematics(A Journal of Chinese Universities),2007,22(1):37-47. 被引量:2
  • 5[1]Il'in V A,Moiseev E I.Nonlocal boundary value problem of the second kind for a Sturm-Liouvill operator in its differential and finite difference aspects[J].Differential Equations,1987,23(7):803-810.
  • 6[2]Il'in V A,Moiseev E I.Nonlocal boundary value problem of the second kind for a Sturm-Liouvill operator[J].Differential Equations,1987,23(8):979-987.
  • 7[3]Gupta C P.Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations[J].J.Math.Anal.Appl.,1992,168:540-551.
  • 8[4]Du Zeng-ji,Xue Chun-yan,Ge Wei-gao.Multiple solutions for three-point boundary value problem with nonlinear terms depending on the firrst order derivative[J].Archiv der Mathematik,2005,84:341-349.
  • 9[5]Yang Chen,Zhai Cheng-bo,Yan Ju-rang.Positive solutions of the three-point boundary value proplem for second order differential equations with an advanced argument[J].Nonl.Anal.2006,65:2013-2023.
  • 10[6]Bai Chuan-zhi,Xu Xin-ya.Positive solutions for a functional delay second-order three-point boundary value problem[J].Electron.J.Differential Equations,2006,41:1-11.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部