期刊文献+

Results on Local Times of a Class of Multiparameter Gaussian Processes

Results on Local Times of a Class of Multiparameter Gaussian Processes
原文传递
导出
摘要 In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t) = (x1 (t),..., xd(t)),where X1 (t),…, Xd(t) are independent copies of Y(t), At first we show the existence and join continuity of the local times of X = {X(t), t ∈ R+^N}, then we consider the HSlder conditions for the local times. In this paper, we introduce a class of Gaussian processes Y={Y(t):t∈R^N},the so called hifractional Brownian motion with the indcxes H=(H1,…,HN)and α. We consider the (N, d, H, α) Gaussian random field x(t) = (x1 (t),..., xd(t)),where X1 (t),…, Xd(t) are independent copies of Y(t), At first we show the existence and join continuity of the local times of X = {X(t), t ∈ R+^N}, then we consider the HSlder conditions for the local times.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第1期81-90,共10页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10571159) Specialized Research Fund for the Doctor Program of Higher Education(No.2002335090)
关键词 Bi-fractional Brownian motiom local time Gaussian random field Bi-fractional Brownian motiom, local time, Gaussian random field
  • 相关文献

参考文献22

  • 1Berman,S.M. Local times and sample function propertics of stationary processes. Trans. Amer. Math.Soc., 137:277-299 (1969).
  • 2Berman, S.M. Local time nondeterminism and local times of Ganssian processes. Indiana Univ, Math.J.,23:69-94 (1973).
  • 3Cuzick,J. Continuity of Gaussian local times. Ann. of Probab., 10:818-823 (1982).
  • 4Cuzick,J., Du Peez,J. Joint continuity of Gaussian local times. Ann. of Probab., 10:810-817 (1982).
  • 5Dawson, D,A,, Perkins, E.A.:Histical Processes. Memoirs Amer. Math. Soc. 454 (1991).
  • 6Deheuvels, P., Mason, D.M.: Random fractal functional laws of the iterated logarithm. Studia Sci. Math.Hungar., 34:89-106 (1998).
  • 7Ehm, W. Sample function properties of multi-parameter stable processes. Z. Walusch. verw Gebiete, 56:195-228 (1981).
  • 8Gcman, D.,Horowitz, J. Occupation densities. Ann. of Probab., 8:1-67 (1980).
  • 9Geman, D., Horowitz, J, Rosen,J. A local time analysis of intersections of Brownian paths in the plane.Ann. of Probab., 12:86-107 (1984).
  • 10Khosimevisan,D., Peres, Y., Xiao,Y. Limsup random fractals. EI.J. Probab., 5(4): 11-24 (2000).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部