期刊文献+

一种求解tableau等式合一问题的算法

An Algorithm to Solve Tableau with Equality Unification Question
下载PDF
导出
摘要 在增添扩展规则的 tableau 方法的基础上提出了一种新的含等词 tableau 方法——等式合一方法,并证明了它的可靠性和完备性。在该方法中,将 tableau 分成两个阶段,等词单独处理,通过提取等式合一问题并求解解替换封闭 tableau,进一步限制了 tableau 的搜索空间,提高了 tableau 的推理效率。同时,为了研究等式合一方法的有效性,在解替换求解方面,提出了提取不等式析取,并在启发式的帮助下计算等价类的方法。通过实例分析,结果表明,等式合一方法优于其它方法。 A new method of tableau with equality based on the additional tableau expansion is proposed and its sound and complete is proved. We adopt the idea of separating the tableau expansion into two stages in the method. The equality handle is independent. It restricts the tableau search space and raises the inference efficiency by extracting the e quality unification problems and solving the substitution to close tableau. At the same time, to verify the validity of the algorithm, we give a method based on the transformation into disjunctions of inequalities and the calculation of equivalence classes with the help of heuristics. Though the instance analysis and implememation of the EU-Tableau system, it shows that equality unification is superior to other methods.
出处 《计算机科学》 CSCD 北大核心 2006年第1期216-219,共4页 Computer Science
基金 本课题得到国家自然科学基金(60073039 60273080 60473003)资助。
关键词 等式合一 不等式析取 等价类 TABLEAU方法 求解 算法 扩展规则 搜索空间 完备性 可靠性 Equality unification, Disiunctions of inequality, Equivalence classes
  • 相关文献

参考文献8

二级参考文献39

  • 1孙吉贵,刘叙华.NC线性对称调解[J].计算机学报,1993,16(8):561-567. 被引量:2
  • 2孙吉贵,刘叙华.表推演方法[J].计算机科学,1995,22(6):45-48. 被引量:2
  • 3Bessonet C G. A Many-Valued Approach to Deduction and Reasoning for Artifical Inteligence. Boston: Kluwer Academic Publishers, 1991.
  • 4Hgthnle R, Kernig W. Verification of switch level designs with many-valued logic. In: Proceedings of LPAR' 93, St. Petersburg, Russia, 1993. 158-169.
  • 5Kerber M, Kohlhase M. A Tableau calculus for partial functions. In: Collegium Logicum. Annals of the Kurt-Godel-Society. New York: Springer-Verlag, 1996. 21-49.
  • 6Bonissone P P. Soft computing: the convergence of emerging reasoning technologies. Soft Computing A Fusion of Foundations, Met hodologies and Applications, 1997,1 ( 1 ) : 6- 18.
  • 7Pearl J. Probabilistic Reasoning in Intelligent System:Networks of Plausible Inference. Revise Second Edition. Morgan Kaufmann,1994.
  • 8Messing B. Combining knowledge with many-valued Logies. In:Data Knowledge Engineering. Boston: Kluwer Aeademie Publishers,1997.
  • 9Zabel R. Proof theory of finity-valued logics [Ph D dissertationS. Institut far Algebra und Diskrete Mathematic,TU Wien,1993.
  • 10Hfihnle R. Uniform notation of Tableaux rules for multiple-valued logics. In: Proceedings of International Symposium on Multiple-Valued Logic, Los Alamitos, 1991. 238- 245.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部