期刊文献+

基于BP神经网络的属性匹配方法研究 被引量:4

Research on Attribute Matching Approach Based on Neural Network
下载PDF
导出
摘要 为了实现异构数据库的数据共享,关键的问题就是要找出数据库间的相同属性。目前主要采用的方法是通过比较所有的属性来实现属性的相似性匹配,但是当同一属性用不同数据类型表示时,由于描述属性的元数据信息和取值信息的极大差异性,这些方法就不能找出相同的属性。并且将不同数据类型描述的属性放在一起匹配,还会造成属性数据之间的干扰,影响匹配结果的准确性。为此,本文提出一种基于 BP 神经网络的二步检查法属性匹配算法。该算法中属性首先根据数据类型进行分类,然后用分类后的属性集分别多次训练神经网络,并对每次的匹配结果求交集作为最终的属性匹配结果,进行两阶段检查,即二步检查法。该算法能有效地消除不一致信息的干扰,降低神经网络的规模,并且可以实现不同数据类型的属性集之间属性匹配过程的并行计算。实验结果显示本文提出的方法能明显地提高系统的运行效率、属性匹配的查准率和查全率。 In order to realize data sharing, identifying corresponding attributes is an important issue in heterogeneous databases. The main approaches at present use the characteristics describing attributes to evaluate the similarity of attributes by comparing all attributes. But these approaches can not present correct results due to the obvious difference of metadata and value information describing attributes when the same attribute is expressed using different data types, and result in incorrect attributes matching for the interference among attributes with different data types. So two phase checking algorithm based on BP neural network is presented to realize attributes matching, in which attributes are required to be categorized according to data types, and the BP neural networks are trained several times respectively using the categorized attributes, and the final attributes matching results are the intersection of every time matching results. This algorithm can resolve the interference among attributes with different data types, and decrease the size of BP neural network, and realize the parallel computation of attributes matching. The experimental results show our approach can improve the system performance, the precision ratio and recall ratio of attributes matching obviously.
出处 《计算机科学》 CSCD 北大核心 2006年第1期249-251,259,共4页 Computer Science
基金 国家自然科学基金项目(70371030) 重庆市教委基金项目(040212)。
关键词 BP神经网络 属性匹配 二步检查法 异构数据库 属性数据 匹配方法 元数据信息 数据类型 匹配算法 相似性匹配 BP ncural network,Attributes matching,Two phase checking algorithm, Heterogeneous databases
  • 相关文献

参考文献13

  • 1Hayne S,Ram Su, Multi user view integration system(MUVIS):An expert system for view integration. In: Proe. in the 6th Intl. Conf. on Data Engineering, 1990. 402-409.
  • 2Sahon G, Yang C S, Yu C T. A theory of term importance in automatic text analysis. Journal of the American Society for Information Science, 1975,26 ( 1 ) : 33 - 44.
  • 3Benkley S S, Fandozzi J E, Housman E M, et al. Data element tool-based analysis ( DELTA ) : [ Technical Report MTR95B0000147]. The MITRE Corporation, Bedford, MA, 1995.
  • 4Li W-S, Clifton C, Liu SY. Database integration using neural networks: implementation and experiences. Knowledge and Information Systems, Springer-Verlag London Ltd, 2000,2 : 73-96.
  • 5Li W S, Clifton C. Semantic integration in heterogeneous databases using neural networks. In: Proe. of the 20th VLDB Conf. Santiago, Chile, 1994.
  • 6Premerlani W J, Blaha M R. An approach for reverse engineering of relational databases. Communications of the ACM, 1994,37(5):42-49.
  • 7Yu C, Sun W, Dao S, Keirsey D. Determine relationships among attributes for interoperability of multi-database systems In:Proc. of RIDE IMS. IEEE, March, 1991.
  • 8Sheth A, Larson J. Federated database systems for managing distributed heterogeneous, and autonomous databases. (komputer Surveys, 1990,22(3): 183-236.
  • 9Li WS, Clifton C. Using field specifications to determine attribute equivalence in heterogeneous databases. In: Third Intl. Workshop on Research Issues on Data Engineering: Interoperability in Multidatabase Systems, IEEE, Vienna, Austria,1993. 174-177.
  • 10Larson A, Navathe S B, Elmasri R. A theory of attribute equivalence in database with application to schema integration. Trans.on Software Engineering, 1989,15 (4) : 449-463.

二级参考文献17

  • 1[1]Hayne S, Ram S. Multi-user view integration system (MUVIS):An exprt system for view integration. In:Proc. in the 6th Intl.Conf. on Data Engineering, IEEE, Feb. 1990. 402~409
  • 2[2]Salton G, Yang C S, Yu C T. A theory of term importance in automatic text analysis. Journal of the American Society for Information Science, 1975,26(1) :33~44
  • 3[3]Benkley S S, Fandozzi J F, Housman E M, Woodhouse G M. Data element tool-based analysis (DELTA): [Technical Report MTR 95B0000147]. The MITRE Corporation, Bedford, MA
  • 4[4]Li W-S, Clifton C, Liu S-Y. Database integration using neural networks: implementation and experiences. Knowledge and Information Systems ,2000, 2: 73~96
  • 5[5]Li W-S,Clifton C. Semantic integration in heterogeneous databases using neural networks. In:Proc. of the 20th VLDB Conf. Santiago, Chile, 1994
  • 6[6]Premerlani W J, Blaha M R. An approach for reverse engineering of relational databases. Communications of the ACM, 1994, 37(5) :42~49
  • 7[7]Yu C, Sun W, Dao S, Keirsey D. Determine relationships among atttibutes for interoperability of multi-database systems. In:Proc. of RIDE-IMS. IEEE, March,1991
  • 8[8]Sheth A,Larson J. Federated database systems for managing distributed heterogeneous, and autonomous databases. Computer Surveys, 1990,22 (3): 183~236
  • 9[9]Li W-S, Clifton C. Using field specifications to determine attribute equivalence in heterogeneous databases. In: Third Intl.Workshop on Research Issues on Data Engineering: INTEROPERABILITY IN MULTIDATABASE SYSTEMS, Vienna, Austria,1993. 174~177
  • 10[10]Larson J A, Navathe S B, Elmasri R. A theory of attribute equivalence in database with application to schema integration. Transaction on Software Engineering, 1989,15 (4): 449 ~463

共引文献4

同被引文献25

  • 1凌妍妍,刘伟,王仲远,艾静,孟小峰.Deep Web数据集成中的实体识别方法[J].计算机研究与发展,2006,43(z3):46-53. 被引量:4
  • 2韩柯,李德毅.元组统计相似性知识的提取与应用[J].计算机研究与发展,1997,34(S1):312-316. 被引量:3
  • 3张愚,王建国.再论“空间句法”[J].建筑师,2004(3):33-44. 被引量:344
  • 4韩恺,岳丽华,龚育昌.基于上下文的异构文档类型定义匹配[J].小型微型计算机系统,2005,26(2):256-260. 被引量:8
  • 5Rahm E,Bernstein P A. A survey of approaches to automatic schema matching [ J ]. The VLDB Journal, 2001,10: 334 - 350.
  • 6Li Wen Syan, Clifton C. SEMINT: A tool for identifying attribute correspondences in heterogeneous databases using neural networks[ J ]. DKE,2000,33 (1) : 49 - 84.
  • 7Yi Shanzhen. XML application schema matching using similarity measure and relaxation labeling[ J ]. Information Sciences, 2005,169:27 - 46.
  • 8MADHAVAN J,JEFFERY S R,COHEN S. Web-scale data integration:you can only afford to pay as you go[A].California,USA:CIDR,2007.342-350.
  • 9CHAUDHURI S,GRANTI V,MOTWANI R. Robust identification of fuzzy duplicates[A].Washington,DC:IEEE Computer Society,2005.865-876.
  • 10SHEN W,DEROSE P,VU L. Source-aware entity matching:a compositional approach[A].Washington,DC:IEEE Computer Society,2007.196-205.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部