期刊文献+

矩阵的多行拟相合分类及其应用 被引量:1

Multi-Row Quasi-Cogrendience Classification of Matrices and It's Application
原文传递
导出
摘要 本文把方阵的拟相合概念推广为长方阵的多行拟相合概念,并对最简情形即M2,4(Fp)给出分类结果.此概念之一应用出现在有限环的同构分类之中. Generalizing the notion of quasi-cogredience of square matrices, this paper advances the notion of multi-row quasi-cogredience of rectangular matrices with all entries in a field F and a square number as it's number of columns,and gives out the result of the 2-row quasicogredience classification of M2,4(Fp)──the simplest case.One of it's applications appears in the isomorphism classification of finite rings.
作者 赵嗣元
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 1996年第5期585-589,共5页 Acta Mathematica Sinica:Chinese Series
关键词 矩阵 拟相合分类 多行拟相合分类 MatriX Classification Square matrix Quasi-cogredience classification Rectangular matrix Multi-row quasi-cogredience classification Ring Algebra Isomorphism Classification
  • 相关文献

参考文献3

  • 1赵嗣元,上海师范大学学报,1993年,22卷,4期,13页
  • 2赵嗣元,数学学报,1992年,35卷,6期,764页
  • 3团体著者,高等代数

同被引文献8

  • 1赵嗣元.M3(Fp)的拟相合分类[J].数学学报(中文版),1993,36(6):764-773. 被引量:1
  • 2刘克勤.决定有限结合环构造的一个递归方法[J].数学杂志,1982,(2):57-62.
  • 3REGHAVENDRAN R. Finite associative rings[J]. Composition Math, 1996, 21: 195-229.
  • 4BLOOM D M. Rings of order four[J]. Amer Math Monthly, 1964,17:918-920.
  • 5GILMER R, MOTT J. Associative rings of order p3[J]. Proc Japan Acad, 1973, 19: 795-799.
  • 6赵嗣元.p3阶结合环分类问题的又一解法[J].上海师范大学学报:自然科学版,1993,22(4):13-17.
  • 7JACOBSON N.Basic Algebra Ⅱ[M].San Francisco Printed in USA.1980,374.
  • 8赵嗣元.Classification of Rings of Order P^k(k>3) With Additive Group of Type (P^(k-1), P)[J].Journal of Mathematical Research and Exposition,1990,10(2):177-182. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部