期刊文献+

广义线性度量误差模型 被引量:2

General Error-in-Variable Linear Models
下载PDF
导出
摘要 在线性度量误差模型中,需要假设所有变量的观测值都含有未知度量误差.因而该模型不适用于一部分变量的观测值含有度量误差、而另一部分变量的观测值可精确得到的情况.为此,本文提出了广义函数、结构和超结构关系线性度量误差模型.进一步,这里还讨论了这些广义线性度量误差模型中参数的最小二乘和极大似然估计方法,给出了参数估计的表达式. In linear error-in-variable models, it is supposed that the observed values of all variables include unknown measurable errors. So the models can not be used to describe the linear relationship of variables in which some variables can be observed exactly, and others can not be observed exactly. Therefore, we offer general error-in-variable models to solve the problem, and discuss the least squares method and likelihood method for the general models.
作者 李勇 唐守正
出处 《应用概率统计》 CSCD 北大核心 2006年第1期81-88,共8页 Chinese Journal of Applied Probability and Statistics
基金 林业部948资助项目2001-13 国家自然科学基金资助项目(10371012 39870612).
  • 相关文献

参考文献4

  • 1Kendall, M.G. and Stuart, A,, The Advanced Theory of Statistics, Vol. 2, 3th Edn Hafner, New York,1967.
  • 2Anderson, T.W., Estimating linear statistical relationships, The Annals Statistics, 12(1)(1984), 1-45.
  • 3Dolby, G.R., The ultrastructural relation: A synthesis of the functional and stractural relations,Biometrica, 63(2)(1976), 39-50.
  • 4Theobald, C.M., An inequality with application to multivariate analysis, Biometrika, 62(1975), 461-466.

同被引文献3

  • 1[3]Wanyne A Fullar.Measurement Error Models[M].New York:Wiley,1987:292-407.
  • 2Dolby G R.The ultrastructural relation:A synthesis of the functional and structur-al relations[].Biometrical Journal.1976
  • 3唐守正,张淑梅.度量误差模型及其应用[J].生物数学学报,1998,13(2):161-166. 被引量:6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部