摘要
研究热传导的两温度理论中的半线性方程 u_t-△u_t-△u=f(u)的初边值问题,证明了当 f′(u)上方有界且满足增长条件(7)时,问题存在唯一整体广义解与整体强解,并讨论了解的渐近性质。
In this paper, we study the initial -boundary value problem of sernilinear heat equation arising in dual temperature theory u_t -Δu_t -Δu = f( u ) , prove that if f′( u ) is bounded above and satisfies growth condition (7), there will exist a unique global generalized solution and a global strong solution, are discuss also the asymptotic behavior of these solutions.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
1996年第2期93-97,共5页
Journal of Harbin Engineering University