摘要
本文用Schauder不动点定理证明了一维K≥0的解、二维K≥0的径向解的存在性,同时证明了当K≤0时,在无穷远处有不同渐近性的K所对应的极大解的渐近性,并给出了径向解的刻画,推广了前人结果.
In this paper, the existences of solutions for K≥0 in one dimension and radial solutions for K≥0 in two dimensions are proved by the Schauder′s fixed point theorem. Moreover, the asymptotic behavior of the maximal solution is described and the radial solutions are classified for K≤0 and has appropriate asympototic behavior at infinite distance.
基金
国家自然科学基金资助项目.
关键词
无界域问题
椭圆型方程
高斯曲率方程
径向解
Gaussian curvature, problem with unbounded domain, semilinear elliptic equation.