摘要
设Γ∈C(1,α),α>0.G是复平面上以Γ为边界的有界单连通区域.本文考虑了极点位于外部,以广义FaberDrbajan有理函数的零点为插值结点的Lagrange插值有理函数序列对A()和Eq(G)(1<q<+∞)中函数的一致逼近和平均逼近阶的估计.
Let G be a bounded simply connected domain in the complex plan with boundary G=Γ∈C(1,α),0<α<1 . In this paper we estimate the uniform and mean approximation orders of functions in A() and E q(G)(1<q<+∞) by their Lagrange interpolation rational functions based on the zeros of the generalized Faber Drbajan rational functions with preassigned poles in the exterior of .
基金
国家自然科学基金资助课题
关键词
有理函数
一致逼近
插值序列
收敛性
复平面
generalized Faber Drbajan rational functions, Lagrange interpolation rational functions, uniform approximation, mean approximation.