期刊文献+

基于函数变换的水下图像目标分割和特征提取 被引量:2

Target segmentation and feature extraction for undersea image base on function transformation
下载PDF
导出
摘要 针对海水信道的特殊性以及成像环境的复杂性,对视觉系统的图像处理和特征提取带来的影响,提出了一种基于模糊变换的图像分割和基于函数变换的特征提取方法,以克服水下不确定因素给目标识别带来的困难,并对其进行了仿真试验。试验结果表明,此方法在对深海烟囱图像的分割和特征提取上能够取得好的效果,可有效地克服水下图像灰度分布不均匀和环境不确定因素的干扰,实现了难于分类判别的深海热液喷口目标的区分。 An image segmentation method based on fuzzy transformation and a feature extraction method based on function transformation are presented in this paper in order to eliminate the effects, which are brought by the particularity of undersea channels and complexity of image obtaining environment, on image processing and feature extraction of vision system. The methods are emulated in the experiment to get over with the trouble brought by uncertain factors in the undersea environment during the process of target-identification. The experimental results have demonstrated that, the approach is valid for target segmentation and feature extraction of undersea hydrothermal vent image. The vision system can be effectively protected from gray-level asymmetric distributing and uncertain environmental interference. The nondescript target differentiation of undersea hydrothermal vent can be achieved.
出处 《高技术通讯》 CAS CSCD 北大核心 2006年第1期16-20,共5页 Chinese High Technology Letters
基金 国家自然科学基金(60475024)、863计划(2002AA401001-4B)资助项目.
关键词 水下图像 模糊变换 图像分割 特征提取 undersea image, fuzzy transformati,,n, image segmentation, feature extraction
  • 相关文献

参考文献3

  • 1Pal S K, King R A. Image enhancement using fuzzy sets.Electronics Letters, 1980, 16(10) :376.
  • 2Vlachos I K, Sergiadis G D. Fuzzy reasoning scheme for edge detection using local edge information based on Renyi' s entropy. Signal Processing alut Its Application, 2003, 1 - 549.
  • 3Wirth D. Lyon J, Nikitenko D. A Fuzzy Approach to Segmenting the Breast Region in Mammograms. Fuzzy Information Processing. NAFIPS'04, 2004, 1:474.

同被引文献16

  • 1李炳成,朱耀庭.图象综合的非规则维布朗模型方法[J].模式识别与人工智能,1989,2(4):11-17. 被引量:1
  • 2余西,彭复员.一种有效的水下图像分割算法[J].微机发展,2005,15(2):76-77. 被引量:2
  • 3Ru S K, Mu J K. A survey on image segmentation [J]. Pattern Recognition, 1981, 139(1): 3-16.
  • 4Haralick R M, Shapiro L G. Survey: image segmentation technique[J]. Computer Vision, Graphics and Image Processing, 1985, 29: 100-132.
  • 5Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
  • 6Arneodo A, Decoster N, Roux S G. A wavelet-based method 5or multifractal image analysis Ⅰ: Methodology and test applications on isotropic and anisotropic random rough surfaces[J]. The European Physical Journal B, 2000, 15: 567-600.
  • 7Antoine J P, Carette P, Murenzi R, et al. Image analysis with two-dimensional continuous wavelet transform[J]. Signal Processing, 1993, 31: 241- 272.
  • 8Zhang Rubo, Liu Jing. Underwater Image Segmentation with Maximum Entropy Based on Particle Swarm Optimization (PSO) [C]//Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences. Washington, DC, USA: IEEE Computer Society, 2006, 2: 346-352.
  • 9Francisco J. Hough Transform for Robust Segmentation of Underwater Multispectral Images [J]. SPIE, 2003, 5093: 591-600.
  • 10Crovato D, Ros B, Filippini M, et al. Segmentation of Underwater Images for AUV Navigation [C]// Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, AK, USA: IEEE, 2000: 25-27.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部