期刊文献+

基于人工神经网络的重组毕赤酵母表达期菌体浓度模型 被引量:2

Artificial Neural Network-based Modeling of Biomass Concentration of Recombinant Yeast Pichia Pastoris at Expression Phase
下载PDF
导出
摘要 针对生物反应过程控制关键变量难以测量的问题,提出一种基于人工神经网络的重组毕赤酵母高密度发酵表达期的细胞菌量软测量模型,并对该模型的拓扑结构以及训练参数进行了初步探讨。当选取合适的模型结构和输入参数,模型的预测值最大误差为3.12%,表明该模型的计算值与菌体浓度实验值基本一致。因此,在毕赤酵母的高密度培养过程中采用基于神经网络的软测量模型具有较高的准确度,可以应用于发酵过程中菌体浓度的实时预测。 An artificial neural network (ANN)-based soft-sensor modeling of biomass is established at expression phase of recombinant yeast Pichia Pastoris in high-cell-density culture. The structures and training parameters of setup models axe investigated. It shows that the maximum error is only 3.12% after a proper structure and input parameters of the ANN-based model are optimized, which means the calculated values of biomass according to models are basically consistent with experimental values. Hence, the precision of the soft-sensor model based on ANN is very high, which can be applied in real-time prediction of biomass concentration during recombinant Pichia Pastoris bioprocess in high-cell-density culture.
出处 《化工自动化及仪表》 EI CAS 2006年第1期18-20,共3页 Control and Instruments in Chemical Industry
基金 国家"十五"高新技术发展计划(863计划)项目(2002aa217021) 国家重大科技专项项目(2002aa2z3451)
关键词 毕赤酵母 高密度培养 人工神经网络 软测量 Pichia Pastoris high-cell-density culture artifical neural network software sensor
  • 相关文献

参考文献8

二级参考文献22

  • 1孙欣,王金春,何声亮.过程软测量[J].自动化仪表,1995,16(8):1-5. 被引量:17
  • 2何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:85
  • 3正树青.先进控制技术及应用[M].北京:化学工业出版社,2001..
  • 4高以成.谷氨酸发酵过程的模型化和参数估计[J].生物工程学报,1985,1(3).
  • 5Breusegem V,Thtbault J,Chéruy,A.On-line prediction of fermentation variables using neural networks[J].Biotechnology & Bioengineering,1990 ;36:1041~1048.
  • 6Karim M N,Rivera S L.Comparison of feed-forward and recurrent neural networks for bioprocess state estimation[J].Computers&Chemical Engineering,1992; 16(Suppl) :369~377.
  • 7Wolpert D H.Stacked generalization.Neural Networks,1992;5(2):241~259.
  • 8Hashem S.Optimal Linear Combination[J].Neural Networks,1997; 10(4) :599~614.
  • 9Sridhar D V,E B Bartlett,R C Sergrave.An information theoretic approach for combining neural network process models[J].Neural Networks,1999; 12:915~926.
  • 10Sridhar D V,E B Bartlett,R C Sergrave.Process modeling using stacked neural networks[J].AIChE Journal,1996;42(9) :2529~2539.

共引文献15

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部