期刊文献+

融合搜索引擎结果集的模糊积分算法 被引量:2

Fuzzy Integral Method to Merge Search Engine Results
下载PDF
导出
摘要 对分布式信息检索的结果集采用模糊积分进行了融合,推导并给出了分布式信息检索的模糊积分算法.该算法可利用模糊积分的单调性,通过计算各信息源的模糊度量值采融合结果集并且评价排序效果.在实际的Web环境中针对4个搜索引擎算法进行了测试,结果发现,经模糊积分后的算法能较好地平衡合唱效应和黑马效应,并能获得更好的信息融合结果.在相同的条件下,所提算法在前100篇文档的排序中所荻得的相关文档数比Borda Count算法多3~4篇,比ComMIN算法多7~8篇. A fuzzy integral algorithm of the distributed information retrieval is derived and given to merge the distributed information retrieval result set. The result set is merged and the evaluation is ranked by using the monotonieity of fuzzy integral and calculating the fuzzy measure values. Four different search engines are tested in the practical web environment, and the results show that the algorithm can balance chorus effect and dark horse effect better after fuzzy integral is carried out, and the information merger can be obtained well. Under same condition, on the top of 100 ranked documents, the number of documents obtained by the proposed integral algorithm is more than Borda Count algorithm 3-4 items, and ComMIN (ComMAX) algorithm 7-8 items, respectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第2期175-178,共4页 Journal of Xi'an Jiaotong University
基金 陕西省自然科学基金资助项目(2004F06)
关键词 分布式信息 信息检索 模糊积分 信息融合 distributed information information retrieval fuzzy integral information merging
  • 相关文献

参考文献7

  • 1Aslam J A,Montague M.Bayes optimal metasearch:a probabilistic model for combining the results of multiple retrieval systems [A].Special Interest Group on Information Retrieval 2000,Athens,Greece,2000.
  • 2Luo Si,Callan J.A semisupervised learning method to merge search engine results [J].ACM Transactions on Information Systems,2003,21(4):457-491.
  • 3Vogt C C,Cottrell G W.Fusion via a linear combination of scores [J].Information Retrieval,1999,1(3):151-173.
  • 4Sugeno M.Fuzzy automata and decision processes [M].New York:North-Holland,1977.89-102.
  • 5Lewis D D.The TREC-4 filtering track[A].The Third Text Retrieval Conference,Washington DC,1996.
  • 6Fox E A,Shaw J A.Combination of multiple searches[A].The Second Text Retrieval Conference,Gaithersburg,USA,1994.
  • 7Aslam J A,Montague M.Models for metasearch[A].Special Interest Group on Information Retrieval 2001,New Orleans,USA,2001.

同被引文献16

  • 1丁一,杨朋英.基于数据融合的Web元搜索模型比较研究[J].计算机仿真,2007,24(4):120-123. 被引量:2
  • 2余晋 邓志鸿 田敬 等.PinkySearch:基于聚类的元搜索引擎.计算机科学,2005,32(7):408-412.
  • 3Bast H, Majumdar D, Schenkel R, et al. IO- Top- k: Indexaccess Optimized Top - k Query Processing[ C ]. In : Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul. Berlin : Springer - verlag, 2006 : 475 - 486.
  • 4Efthimiadis E N. Query Expansion[ J]. Annual Review of Information Systems and Technology, 1996, 1 (31) : 121 - 187.
  • 5Jin R, Valizadegan H, Li H. Ranking Refinement and Its Application to Information Retrieval [C]. In: Proceedings of the 17th International Conference on World Wide Web. New York: ACM, 2008: 397 - 406.
  • 6Egozi O, Gabrilovich E, Markoviteh S. Concept - based Feature Generation and Selection for Information Retrieval[C]. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago: AAAI, 2008.
  • 7Wu Z H, Meng W Y, Yu C, et al. Towards a Highly-Scalable and Effective Metasearch Engine[R]. New York: Department of Computer Science, Binghamton University, 2001.
  • 8Shokouhi M, Azzopardi L, Thomas P. Effective Query Expansion for Federated Search [ C ]. In: Proceedings of S1GIR. Boston: ACM, 2009.
  • 9Serdyukov P. Query Routing in Peer - to - Peer Web Search[ DI. Saarland: Saarland University,2005.
  • 10Metaseareh Search Engine - Search. corn [EB/OL]. [ 2010 - 11 - 01 ]. http ://www. search, com.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部