期刊文献+

基于冗余算法和跳跃式结构的54位乘法器的研究 被引量:1

Research on 54×54 Bit Multiplier Based on Redundant Algorithm and Leapfrog Architecture
下载PDF
导出
摘要 为了提高乘法器的综合性能,提出了一种新的冗余Booth三阶算法和跳跃式Wallace树结构,前者可以减少部分积的数目,提高部分积的产生速度,后者可以加快部分积的压缩,减少电路内部的伪翻转,从而降低功耗.基于冗余Booth三阶算法和跳跃式Wallace树结构,采用0.25μmCMOS工艺,实现了54×54位全定制乘法器,其乘法延时为4.3 ns,芯片面积为1.38 mm2,50MHz频率下的动态功耗仅为47.2 mW.模拟验证表明,与采用传统Wallace树结构和改进Booth二阶算法的乘法器相比,该乘法器的乘法延时减少了23%,功耗降低了17%,面积减少了20%. A new redundant Booth algorithm for radix-8 and a novel leapfrog Wallace tree structure are presented for enhancing comprehensive performance of multiplier. The former reduces the number of partial product and enhances the generating speed of partial product; the latter has a regular layout because of the simplicity of the necessary interconnections between the compressors, and it reduces the spurious switching in the circuit to save power dissipation. By using these new techniques, a 54×54 bit multiplier is designed using 0.25μm CMOS technology. The multiplication time is 4.3 ns at 2.5 V power supply, the active area is 1.38 mm^2 , and the power dissipation is only 47.2 mW for operating frequency 50 MHz. Compared to the conventional multiplier with modified Booth algorithm for radix-4 and Wallace tree architecture, the proposed techniques employed in the multiplier reduces 17% of the power dissipation and 23% of the multiplication time, and the area of multiplier is reduced by 20%.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第2期191-194,共4页 Journal of Xi'an Jiaotong University
关键词 冗余Booth算法 跳跃式Wallace树 乘法器 部分积 redundant Booth algorithm leapfrog Wallace tree multiplier partial product
  • 相关文献

参考文献5

  • 1孙海珺,邵志标,邹刚,赵宁.高性能低功耗32位浮点RISC微处理器的研究[J].西安交通大学学报,2005,39(6):607-610. 被引量:4
  • 2Ma G K,Taylor F J.Multiplier policies for digital signal processing [J].IEEE Transactions on Signal Processing,1990,1(7):6-20.
  • 3Nan Y S,Chen O T.Low-power multipliers by minimizing switching activities of partial products [A].IEEE International Symposium on Circuits and Systems [C].Arizona,USA:IEEE Circuits and Systems Society,2002.93-96.
  • 4Jessani R M,Putrino M.Comparison of single and dual-pass multiply-add fused floating-point units [J].IEEE Transactions on Computers,1998,47(9):927-937.
  • 5Shivaling S M,Poras T B.High performance low power array multiplier using temporal tiling [J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems,1999,7(1):121-124.

二级参考文献6

  • 1Geun Y, Ju S. Design of 32-bit RISC processor and efficient verification[A]. The 7th Korea-Russia International Symposium on Science and Technology[C]. Ulsan, Korea: Research Institute of Basic Science at University of Ulsan, 2003. 222-227.
  • 2Friebe L, Stolberg H, Berekovic M, et al. HiBRID-SoC: a system-on-chip architecture with two multimedia DSPs and a RISC core [A]. Proceedings IEEE International SOC Conference[C]. Portland, USA: IEEE Circuits and Systems Society, 2003. 259-260.
  • 3Yamada T, Ishikawa M, Ogata Y, et al. A low-power embedded RISC microprocessor with an integrated DSP for mobile applications[J]. IEICE Transactions on Electronics, 2002, 5(2): 253-262.
  • 4Hong J H, Wu C W. Cellular-array modular multiplier for fast RSA public-key cryptosystem based on modified Booth's algorithm[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2003, 11(3): 474-484.
  • 5Wen C Y, Chein W J. High-speed Booth encoded parallel multiplier design[J]. IEEE Transactions on Computers, 2000, 49(7): 692-701.
  • 6Tsui C Y, Pedram M. Accurate and efficient power simulation strategy by compacting the input vector set[J]. Integration, the VLSI Journal, 1998, 25(1): 37-52.

共引文献3

同被引文献8

  • 1徐东明.一种快速的改进CLA加法器设计[J].西安邮电学院学报,2005,10(1):6-9. 被引量:2
  • 2赵忠民,林正浩.一种改进的Wallace树型乘法器的设计[J].电子设计应用,2006(8):113-116. 被引量:12
  • 3Booth A. A Signed Binary Multiplication Technique[J]. Quarter Journal of Mechanics and Applied Mathematics, 1951, 4(2): 236-240.
  • 4Bewick G W. Fast Mulplication Algorithms and Implementation[D]. Stanford, USA: Stanford University, 1994.
  • 5MacSorley O L. High-speed Arithmetic in Binary Computers[J]. Proceedings of the IRE, 1961, 49(1): 67-91.
  • 6Shivaling S M, Poras T B. High Performance Low Power Array Multiplier Using Temporal Tiling[J]. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 1999, 7(1): 121-124.
  • 7Brent P R, Kung T H. A Regular Layout for Parallel Adders[J]. IEEE Transactions on Computers, 1982, 32(3): 260-264.
  • 8Kogge P, Stone H. A Parallel Algorithm for the Efficient-Solution of a General Class of Recurrence Equations[J]. IEEE Transactions on Computers, 1973, 22(8): 783-787.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部