期刊文献+

混合边界条件下的定常旋转Navier-Stokes方程 被引量:2

Stationary Rotating Navier-Stokes Equations with Mixed Boundary Conditions
下载PDF
导出
摘要 在混合边界条件下,研究了二维和三维放置通道内的定常不可压缩黏性流体所满足的Navier-Stokes方程的适定性问题,根据流体在进出口的能量流量的某种有界性假设,得到了旋转Navier-Stokes方程在混合边界条件下的解的先验估计,并运用压缩映射、不动点原理和紧性定理,证明了其解的存在性、惟一性. Two and three dimensional stationary rotating Navier-Stokes equations with mixed boundary conditions were studied. The prior estimate of the corresponding solution was obtained under the assumption of bounded energy flow in the inlet and outlet. Employing fixed point theory and compactness theory, the existence and uniqueness of the solution were proved with the compress mapping.
作者 苏剑 李开泰
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第2期231-234,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50136030 50306019 10471109 10471110 40375010 10571142)
关键词 旋转Navier-Stokes方程 混合边界 存在性 惟一性 rotating Navier-Stokes equation mixed boundary condition existence uniqueness
  • 相关文献

参考文献5

  • 1Glowinski R.Finite element methods for incompressible viscous flow[M].Amsterdam,Netherlands:North-Holland,2003.
  • 2Katamine E,Azegami H,Tsubata T,et al.Solution to shape optimization problems of viscous flow fields[J].International Journal of Computational Fluid Dynamics,2005,19(1):45-51.
  • 3Heywood J G,Rannacher R,Turek S.Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations[J].International Journal for Numerical Methods in Fluid,1996,22(5):325-352.
  • 4李开泰,黄艾香,黄庆怀.有限元方法及其应用(下)[M].西安:西安交通大学出版社,1988.
  • 5Kracmar S,Neustupa J.A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions[J].Nonlinear Analysis-Theory Methods & Applications,2001,47(6):4169-4180.

同被引文献11

  • 1Glowinski R. Finite Element Methods for Incompressible Viscous Flow[M]. North-Holland, 2003.
  • 2Katamine E, Azegami H, Tsubata T et al. Solution to shape optimization problems of viscous flow fields[J], international Journal of Computational fluid Dynamics, 2005, 19(1): 45-51.
  • 3Heywood J G, Rannacher R, Turek S. Artificial Boundaries and Flux and Pressure Conditions for the Incompressible Navier-Stokes Equations[J]. International Journal for Numerical Methods in Fluid, 1996, 22: 325-352.
  • 4Li K T, Su J, Gao L M. Optimal Shape Design for Blade's Surface of a Impeller via the Navier- Stokes Equations[J]. Commun. Numer. Meth. Engng, 2006, 22: 657-676.
  • 5Temam R. Navier-Stokes Equations[M]. North-Holland, Amsterdam, New York, 1984.
  • 6Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations Theory and Algorithms[M]. Springer-Verlag, Berlin Heidelberg, 1986.
  • 7Kucera P, Skaldk Z. Local Solutions to the Navier-Stokes Equations with Mixed Boundary Conditions[J]. Acta Applicandae Mathematicae, 1998, 54: 257-288.
  • 8Kracmar S, Neustupa J. A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions[J]. Nonlinear Analysis-Theory Methods & Applications, 2001, 47(6): 4169-4180.
  • 9Codina R, Soto S. Finite element solution of the Stokes problem with dominating coriolis force[J]. Comput. Methods Appl. Mech. Engrg. 1997, 142: 215-234.
  • 10Saad Y, Henk A, Vorst V D. Iterative solution of linear systems in the 20th century[J]. Journal of Computational and Applied Mathematics, 2000, 123(2000): 1-33.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部