期刊文献+

Fabrication and Characterization of Well-Aligned Zn1-xMnxO Nanorods

Fabrication and Characterization of Well-Aligned Zn1-xMnxO Nanorods
下载PDF
导出
摘要 Well-Migned Zn1-xMnxO nanorods have been synthesized successfully on bare silicon substrates by a simple evaporation method without using any catalyst. X-ray diffraction and electron microscopy studies demonstrate that the as-grown nanorods are of single wurtzite phase with a preferential growth direction along their c- axes, Quantitative energy-dispersive spectrum analysis reveals that the concentration of manganese is around 4 at,%, Magnetic measurements show the single-phase Zn1-xMnxO nanorod arrays exhibiting the paramagnetic behaviour. Photolumlnescence spectra demonstrate that the Zn1-xMnxO nanorods preserve ultraviolet emission at room temperature. Well-Migned Zn1-xMnxO nanorods have been synthesized successfully on bare silicon substrates by a simple evaporation method without using any catalyst. X-ray diffraction and electron microscopy studies demonstrate that the as-grown nanorods are of single wurtzite phase with a preferential growth direction along their c- axes, Quantitative energy-dispersive spectrum analysis reveals that the concentration of manganese is around 4 at,%, Magnetic measurements show the single-phase Zn1-xMnxO nanorod arrays exhibiting the paramagnetic behaviour. Photolumlnescence spectra demonstrate that the Zn1-xMnxO nanorods preserve ultraviolet emission at room temperature.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第3期716-719,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 50502005, and Beijing Natural Science Foundation under Grant No 1062008.
关键词 DILUTED MAGNETIC SEMICONDUCTORS DOPED ZNO FILMS THIN-FILMS ROOM-TEMPERATURE QUANTUM WIRES ZINC OXIDE FERROMAGNETISM SPECTRA AMBIENT GROWTH DILUTED MAGNETIC SEMICONDUCTORS DOPED ZNO FILMS THIN-FILMS ROOM-TEMPERATURE QUANTUM WIRES ZINC OXIDE FERROMAGNETISM SPECTRA AMBIENT GROWTH
  • 相关文献

参考文献19

  • 1Kyrychenko F V and Kossut J 2001 Physica E 10 378.
  • 2Ge S H, Wang X W, Kou X M, Zhou X Y, Xi L, Zuo Y L,Yang X L and Zhao Y X 2005 Chin. Phys. Lett, 22 1772.
  • 3Takabayashi K, Takahashi N, Yagi I, Yui K, Souma I, Shen J X and Oka Y 2000 J. Lumin. 87-89 347.
  • 4Tang Z K, Yu P, Wong G K L, Kawasaki M, Ohtomo A,Koinuma H and Segawa Y 1997 Solid State Commun. 103459.
  • 5Bates C H, White W B and Roy R 1966 J. Inorg. Nucl.Chem. 28 397.
  • 6Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019.
  • 7Ando K, Saito H, Jin Z W and Fukumura T 2001 J. Appl.Phys. 89 7284.
  • 8Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79988.
  • 9Sharma P, Gupta A, Rao K V, Owens F J, Sharma R,Ahuja R, Guillen J M O, Johansson B and Gehring G A 2003 Nature Mater. 2 673.
  • 10Chang Y Q, Wang D B, Xu J, Luo X H, Xu X Y, Chen C P, Wang R M and Yu D P 2003 Appl. Phys. Lett. 83 4020.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部