摘要
The open-circuit photovoltage is improved by adding 1-hexyl-3-methylimidazolium iodide (HMImI) into the electrolyte. To investigate the mechanisms of the increase of the open-circuit photovoltage, we take the MottSchottky analysis and time-resolved mid-infrared absorption spectroscopy to study the band edge movement of TiO2 and the rate of back electron transfer, respectively. The results indicate that the negative shift of the conduction band of TiO2 is a predominant factor to increase the open-circuit photovoltage for the electrolyte containing HMImI,
The open-circuit photovoltage is improved by adding 1-hexyl-3-methylimidazolium iodide (HMImI) into the electrolyte. To investigate the mechanisms of the increase of the open-circuit photovoltage, we take the MottSchottky analysis and time-resolved mid-infrared absorption spectroscopy to study the band edge movement of TiO2 and the rate of back electron transfer, respectively. The results indicate that the negative shift of the conduction band of TiO2 is a predominant factor to increase the open-circuit photovoltage for the electrolyte containing HMImI,
基金
Supported by the Major State Basic Research and Development Programme of China under Grant No G2000028205, the National High Technology Program of China under Grant No 2002AA302403, and the National Natural Science Foundation of China under Grant Nos 50221201 and 50473055.