期刊文献+

Dirichlet边界条件下一类拟线性椭圆方程组的多解性 被引量:1

Multiplicity of solution for quasilinear elliptic systems with Dirichlet boundary condition
下载PDF
导出
摘要 通过运用Ricceri的一个三临界点定理,讨论了一类具变分结构的拟线性椭圆方程组,获得了多解的存在性,并且给出了解的位置. The existence of solutions for quasilinear elliptic systems is one of the most important research field in nonlinear problem. By Ricceri's three critical points theorem, the existence of solutions for a class of quasilinear elliptic systems with variational structure was proved and the location of the solutions was also determined.
出处 《浙江师范大学学报(自然科学版)》 CAS 2006年第1期22-25,共4页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10471113) 浙江省自然科学基金资助项目(M103098)
关键词 多解 拟线性椭圆方程组Dirichlet边界条件 变分法 Multiple solutions quasilinear elliptic systems Dirichlet boundary condition variational method
  • 相关文献

参考文献9

  • 1Bensedik A,Bouchekif M.On certain nonlinear elliptic systems with indefinite terms[J].Electron J Dif Eq,2002(83):1-16.
  • 2Figueiredo D,Ding Y.Strongly indefinite functionals and multiple solutions of elliptic systems[J].Trans Amer Math Soc,2003,355(7):2973-2989.
  • 3Bozhkov Y,Mitidieri E.Existence and multiple solutions for quasilinear systems via fibering method[J].J Dif Eq,2003,190(1):239-267.
  • 4Ricceri B.On a three critical points theorems[J].Arch Math,2000,75(3):220-226.
  • 5Ricceri B.Existence of three solutions for a class of elliptic eigenvalue problems[J].Math Comput Modelling,2000,32(11):1485-1494.
  • 6Boccardo L,Figueiredo D.Some remarks on a system of quasilinear elliptic equations[J].Nonlinear Differ Equ Appl,2002,9 (1):309-323.
  • 7Anello G,Cordaro G.An existence theorem for the Neumann problem involving the p-Laplacian[J].J Convex Analysis,2003,10(1):185-198.
  • 8Bonanno G,Candito P.Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian[J].Arch Math,2003,80(4):424-429.
  • 9Bonanno G,Liverea R.Multiplicity theorems for the Dirichlet problem involving the p-Laplacian[J].Nonlinear Anal,2003,54(1):1-7.

同被引文献7

  • 1LIU Jingjing, SHI Xiayang. Existence of three solutions for a class of quasilinear elliptic systems involving the (p(x), q(x))-Laplacian[J]. Nonlinear Anal, 2009, 71:550 -557.
  • 2FAN Xianling, ZHAO Dun. On the spaces L^P(x)(Ω) and W^m,p(x)(Ω)[J]. J Math Anal Appl, 2001, 263: 424-446.
  • 3Ricceri B. Existence of three solutions for a class of elliptic eigenvalue problems[J]. Math Comput Modelling, 2000, 32(11): 1485-1494.
  • 4Ricceri B. On a three critical points theorems[J]. Arch Math, 2000, 75(3): 220-226.
  • 5Zeidler E. Functional Analysis and Its Applications[M]. Vol. II/B, Springer, 1985.
  • 6Bonanno G. Some remarks on a three critical points theorem[J]. Nonlinear Anal, 2003, 54: 651-665.
  • 7Mihilescu Mihai, R-dulescu V. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[J]. Froc R Soc A, 2006, 462: 2625-2641.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部