期刊文献+

一种新的快速视频图像边缘检测算法 被引量:2

A Novel Fast Edge Detection Algorithm for Video Images
下载PDF
导出
摘要 一般常用的边缘检测算法计算量较大,对细小边缘检测效果较差,不适合实时边缘检测系统。针对这一问题,本文提出一种连续分割的快速边缘检测算法:从相互垂直两方向分割梯度图像,提取截面曲线极大值获得图像边缘,使用形态学梯度,检测出细小的图像边缘。实验结果表明此算法较Canny等经典算法减少了计算量,提高了边缘检测精度。 The general edge detectors, such as Canny, snake etc., are computationally expensive and can't detect the imperceptibility edges well. A fast edge detection technique using successive segmentation is presented, The imperceptibility edges are detected well by using the morphological gradient. The experimental results show that our proposed technique performs favorably when compared with many other well - known edge detection algorithms. This edge detection technology can be used widely in system such as ART, real time object tracking, etc,
出处 《电讯技术》 2006年第1期88-93,共6页 Telecommunication Engineering
关键词 视频图像 边缘检测 快速算法 连续分割 形态学梯度 video image edge detection fast algorithm successive segmentation morphological gradient
  • 相关文献

参考文献7

  • 1J F Canny.A computational approach to edge detection[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1986:679~698.
  • 2David A Forsyth Jean Ponce.COMPUTER VISION A MODERN APPROACH[M].Beijing:Tsinghua university press,2004:165~187.
  • 3Andr′e Bleau,L Joshua Leon.Watershed-Based segmentation and Region Merging[J].Computer Vision and Image Understanding,2000,77:317~370.
  • 4Salembier P.Morphological multiscale segmentation for image coding[J].Signal Processing,1994,38 (3):359~386.
  • 5Vincent L.Morphological grayscale reconstruction in image analysis:Application and efficient algorithms[J].IEEE Trans on Image Processing,1993,2(2):176~201.
  • 6L Vincent,P Soille.Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Trans.Pattern Anal.Machine Intell.,1991,13(6):583~598.
  • 7S.M.Smith.Feature Based Image Sequence Understanding[D].Robotics Research Group,Department of Engineering Science,Oxford University,1992.

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部