期刊文献+

基于LSSVM实现CO_2转化率的软测量建模 被引量:4

Modeling of soft sensing transformation efficiency of carbon dioxide based on LSSVM
原文传递
导出
摘要 将最小二乘支持向量机LSSVM用于中压联尿尿素生产中CO2转化率的软测量建模,并与BPNN、RBFNN模型进行比较,研究表明,最小二乘支持向量机建模快速、准确,泛化性能好。将该模型用于生产试验,预测结果与事后分析值的均方误差MSE<0.006,最大绝对误差为0.280 1,相对误差绝对值在0.1%以内的约占90%,最大相对误差绝对值仅为0.42%,模型表现稳定,效果令人满意。 Soft sensor modeling method based on Least Square SVM(LSSVM) is proposed in this paper. The sensor is used to predict the transformation efficiency of carbon dioxide in medium pressure diurea process. Compared with BPNN and RBFNN the research indicates that this method is featured with higher speed, more accuracy and better generalization ability and performance. The experiment results shows that the mean square errors of estimation out!puts and analytical values are less than 0. 006 ,and about 90% absolute relative errors are less than 0. 1%. The maximal absolute error is 0. 262 1, and the maximal absolute relative error is only 0. 42%. The model is stahle and the result is satisfactory.
作者 范磊 张运陶
出处 《计算机与应用化学》 CAS CSCD 北大核心 2006年第1期55-58,共4页 Computers and Applied Chemistry
关键词 最小二乘支持向量机 中压联尿装置 CO2转化率 软测量 LSSVM, medium pressure diurea equipment, transformation efficiency of carbon dioxide, soft sensor
  • 相关文献

参考文献6

二级参考文献30

  • 1蔡煜东,宫家文,甘骏人,姚林声.应用人工神经网络方法预测油气[J].石油地球物理勘探,1993,28(5):634-638. 被引量:14
  • 2于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 3王旭东,邵惠鹤.神经元网络建模与软测量技术[J].化工自动化及仪表,1996,23(2):28-31. 被引量:30
  • 4Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69.
  • 5Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385.
  • 6Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition.
  • 7Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 9Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995.
  • 10Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledges Discovery[ J ], 1998,2(2 )

共引文献251

同被引文献24

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部