期刊文献+

语音增强用于抗噪声的汉语说话人识别 被引量:4

Speech Enhancement Applied to Chinese Speaker Identification in Noisy Environments
下载PDF
导出
摘要 大多数实际应用环境中总是存在各种各样的噪声,由于训练环境与识别环境不匹配,现有的绝大多数说话人识别系统在噪声环境中的性能都不可避免的急剧下降。为了让说话人识别系统在强噪声环境中,有较好的识别效果,研究一个将语音增强器和说话人识别系统级连起来的系统,该系统中将语音增强作为前端处理来提高输入的信噪比,实验证明,该系统具有很好的抗噪声性能。 This paper presents our recent work on a noisy speaker identification system. There are all kinds of noises in practical environments. Because of the unmatchment of identifying environments with training environments, the performance of most speaker identification systems degrades quickly, in our system, speech enhancement as the frontend processing module is used to improve the Signal-Noise Ratio of the input signal for speaker identification in the latter stages. Experimental results show that the system is satisfactory in noisy environments.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第2期166-168,共3页 Microelectronics & Computer
基金 上海工程技术大学青年基金项目
关键词 语音增强 谱减法 听觉模拟 说话人识别 Speech enhancement, Spectral subtraction, Auditory simulation, Speaker identification
  • 相关文献

参考文献5

二级参考文献11

  • 1[1]Douglas A Reynolds, Richard C Rose.Robust text-independent speaker identification using Gaussian mixture speaker models[J]. IEEE Trans. on Speech and Audio Processing,1995,3(1):77-83.
  • 2[2]K Fukunaga.Introduction to statistic pattern recognition[M].New York: Academic Press, 1990.
  • 3[3]A P Dempster, N M Laird D B Rubin.Maximum likelihood from incomplete data via the EM algorithm[J]. J Roy Statist Soc. 1977,B 39:1-38.
  • 4[4]Kuo-Hwei You, Hsiao-Chuan Wang. Joint estimation of feature transformation parameters and Gaussian mixture model form speaker identification[J]. Speech Communication, 1999,28:227-241.
  • 5秦前清,实用小波分析,1994年,54页
  • 6Yang X,IEEE Trans Information Theory,1992年,138卷,824页
  • 7Gray A,Markel J.Distance measures for speech processing[J].IEEE Trans on ASSP,1976,24(5):380-391.
  • 8Wang S H,Sekey A,Gersho A.An objective measure for predicting subjective quality of speech coders [J].IEEE Journal on Sel areas in Communication,1992,10(5):819-829.
  • 9Steven F B.Suppression of noise in speech using the SABER method[C].ICASSP'78.606-609.
  • 10Steven F B.Suppession of acoustic noise in speech using spectral subtraction [J].IEEE Trans on ASSP,1979,27(2):113-120.

共引文献70

同被引文献20

  • 1郭春霞,裘雪红.基于MFCC的说话人识别系统[J].电子科技,2005,18(11):53-56. 被引量:19
  • 2谢建平.基于MVQM说话人识别系统的DSP实现[J].微电子学与计算机,2006,23(6):220-222. 被引量:2
  • 3杨毅,杨宇,余达太.语音增强及其消噪能力研究[J].微电子学与计算机,2006,23(7):202-203. 被引量:5
  • 4芮贤义,俞一彪.噪声环境下说话人识别的组合特征提取方法[J].信号处理,2006,22(5):673-677. 被引量:12
  • 5Reynolds D A. An overview of automatic speaker recognition technology[ C] // Proceeding of the IEEE International Corderence on Acoustics, Speech, and Signal Processing. Orlando, Florida: IEEE Press, 2002(4) :4072 - 4075.
  • 6Zhang J, Walter G. Wavelet neural networks for function learning [ J ]. IEEE Transaction on Signal Processing, 1995,43(6) : 1485 - 1497.
  • 7Yamamoto Y, Nikiforuk P N. A new supervised learning algorithm for multilayered and interconnnected neural networks[J ]. IEEE Transaction on Neural Network, 2000, 11(1) :36 -46.
  • 8Nordholm S, Siow Yong Low. Speech signal extraction utilizing PCA- ICA algorithm with a non - uniform spacing microphone array[ C]//Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing. France: Toulouse, 2006 : 965.
  • 9Tsuneo N. Feature extraction for speech recognition based on ohogonal acoustic-feature panes and LDA[ C]//Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing. USA: Phoenix, AZ, 1999:421-424.
  • 10李宏言,盛利元,陈妮.基于矢量量化和查找表的改进DTW语音识别方法[J].计算机工程与设计,2007,28(19):4702-4704. 被引量:3

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部