摘要
利用Bez(a,b)矩阵与其中多项式a(λ)的第一友阵适于的缠绕关系,以及a(λ)和b(λ)的变量变换关系给出了Hankel矩阵所满足的几种新型合同关系、缠绕关系;利用Bezout矩阵的Barnett分解以及Bez(a,b)中a(λ)的零点与其第一友阵特征值的一致性,给出了利用Hankel矩阵的非奇异性判定多项式对互素的新方法.
Some new congruence and twining relations are investigated by using the known one of Bez ( a, b ) with the first companion matrix of a (λ). A new method to judge the relatively prime on double polynomials a (λ) and b (λ) is given in terms of the Barnett factorition of Bezout matrix and the unanimity of the zeropoints with the eigenvalues of the first companion matrix of a (λ).
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2005年第4期97-99,共3页
Journal of Zhengzhou University of Light Industry:Natural Science
关键词
HANKEL矩阵
对称化子
友阵
Barnett分解
互素
Hankel matrix
symmetrizer
companion matrix
Barnett factorization
relatively prime of polynomials