摘要
研究一类一阶非线性时滞微分方程,x(′t)+a(t)f(x(t))+p(t)g(x(t))h(x(t-1τ(t)),x(t-2τ(t)),…,x(t-nτ(t)))=0,其中,a,p,jτ∈C(R+,R+),limt→+∞(t-1τ(t))=+∞,j=1,2,…,n,f,g∈C(R,R),获得了其存在正解的充分条件.
In this paper we consider the first order nonlinear delay differential Equa- tion x′(t)+a(r)f(x(t))+p(t)g(x(t))h(x(t-τ1(t)),x(t-τ2(t)),…,x(t-τn(t)))=0,where a,p,τj∈C(R^+,R^+),limt→+∞(t-τ1(t))=+∞,j=1,2,…,n,f,g∈C(R,R),and a sufficient condition for the above equation existed positive solution is obtained.
出处
《南华大学学报(自然科学版)》
2005年第4期27-31,共5页
Journal of University of South China:Science and Technology
关键词
时滞微分方程
正解
存在性
delay differential equation
positive solution
existence