期刊文献+

一种应用于多通道自适应有源控制的快速算法 被引量:2

A Fast Algorithm Applied to Multichannel Adaptive Active Noise Control
下载PDF
导出
摘要 主要讨论了应用于多通道有源噪声控制系统的自适应组合逆算法及其性能分析。通过对该算法的理论推导,阐明其整体思路及物理意义,同时通过在同参数条件下与FxLMS算法的计算机仿真比较,得出结论:在多通道有源控制中,组合逆算法有效地降低了算法运算量,适合应用于多通道系统。 A combined adaptive inverse algorithm is applied to a multichannel active noise control system, and its computational load and performances are analyzed in this paper. First, the algorithm and its physical meanings are examined,then it is derived that the computational load of Combined Filtered-e LMS algorithm can be largely reduced in the field of mutichannel active control in comparison with the commonly used Filtered-x LMS algorithm.
出处 《电声技术》 2006年第1期52-56,共5页 Audio Engineering
基金 国家自然科学基金(10274060).
关键词 多通道有源控制 自适应算法 快速算法 multichannel active control adaptive algorithm fast algorithm
  • 相关文献

参考文献4

  • 1尹雪飞.多通道自适应逆控制系统研究[D].西安:西北工业大学,2004.
  • 2Bouchard M, Scott Norcross. Computational Load Reduction of Fast Convergence Algorithms for MultiChannel Active Noise Control, Signal Processing[J]. 2003,83:121-134.
  • 3Mahesh Godavarti, Alfred O Hero. Partial Update LMS Algrithmst[J]. IEEE Transactions on Signal Processing, 2005,53(7) :2 382-2 398.
  • 4Scott C Douglas. Fast Implementations of the Fihered-x LMS and LMS Algorithms for Multichannel Active Noise Control[J]. IEEE Transactions on Speech and Audio Processing, 1999, 7(4) :454-464.

共引文献1

同被引文献18

  • 1韩立群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
  • 2段海滨.蚁群算法及其应用[M].北京:科学出版社,2005:98-101.
  • 3李晓燕.基于神经网络的自适应噪声抵消的研究[D].武汉:武汉理工大学,2010.
  • 4苏畅,徒君.一种自适应最大最小蚁群算法[J].模式识别与人工智能,2007,20(5):688-691. 被引量:14
  • 5SOCHA K, BLUM C. An ant colony optimization algorithm for continuous optimization: application to feed - forward neural training [ J 1. Neural Computing and Applications, 2007,16 (3) :235 - 247.
  • 6MADADGAR S, AFSHAR A. An improved continuous ant algorithm for optimization of water resources problems [J ]. Water Resources Management ,2009,23 (10) :2119 - 2139.
  • 7GUAN Kai,WEI Zhiqiang,YIN Bo.SOC Prediction Method of a New Lithium Battery Based on GA-BP Neural Network[M]. Springer International Publishing,2015:141-153.
  • 8HAO Gang.Study on Prediction of Urbanization Level Based on GA-BP Neural Network[ M ].Atlantis Press, 2015:521-524.
  • 9ZHANG Yilong,CAI Yajun,WU Huanhuan.Research on Cost Estimation of Highway Project Based on the GA-BP Algorithm [ M ].Springer Berlin Heidelberg, 2015 : 451-462.
  • 10SAMANTA B.Artificial neural networks and genetic algorithms for gear fault detection [ J ].Mech.Syst.Signal Process, 2004, 18 (5):1273-1282.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部