期刊文献+

基于多部访问结构的理想的秘密共享方案 被引量:5

Ideal Secret Sharing Schemes with Multipartite Access Structure
下载PDF
导出
摘要 在多部访问结构中,参与者集合被分为m个子集,同一子集中的参与者在系统中起到相同的作用。文章介绍了多部访问结构的概念,构造了一种三部访问结构,并通过向量空间构造法从理论上证明了该三部访问结构是理想的访问结构。通过该文提出的方法,可以很容易地将三部访问结构的结论推广到多部访问结构。 In a muhipartite access structure,the set of participants is partitioned in m subsets and all participants in the same subset play an equivalent role. The conception of multipartite access structure is introduced in this paper. A tripartite access structure is constructed. By the vector space method,it is shown that the tripartite access structure is ideal access structure. Finally,the conclusion of tripartite access structure is generalized to multipartite access structure.
作者 李凯 罗贵明
出处 《计算机工程与应用》 CSCD 北大核心 2006年第4期142-144,182,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60474026) 清华亚洲基金资助
关键词 多部访问结构 理想的秘密共享方案 向量空间构造法 multipartite access structure,ideal secret sharing scheme,vector space construction
  • 相关文献

参考文献13

  • 1Douglas R Stinson.Cryptography:Theory and Practice.Boca Raton,FL: CRC 1995.
  • 2G J Simmons.An introduction to shared secret and/or shared control schemes and their application,in Contemporary Cryptology[M].The Science of Information Integrity,New York:IEEE Press, 1991:441-497.
  • 3G R Blakley.Safeguarding cryptographic keys[C].In:Proc AFIPS 1979 Natl Computer Conf, 1979 : 313-317.
  • 4A Shami.How to share a secret[J].Commun ACM,1979;22:612-613.
  • 5J C Benaloh,J Leichter.Generalized secret sharing and monotone functions[C].In :Advances in Cryptology-CRYPTO'88, Lecture Notes in Computer Science. Springer, Berlin, 1989 : 27-35.
  • 6M Ito.A Salto,T Nishizeki.Secret sharing scheme realizing general access structure[C].In:Globecom'87 ,Tokyo,Japan, 1987:99-102.
  • 7E F Briekell.Some ideal secret sharing schemes[J].J Combin Math, Combin Comput, 1989 ; (9) : 105- 113.
  • 8黄根勋,高峰修,张利民,刘章山.一类抗欺骗攻击的秘密共享体制的构造[J].通信技术,2003,36(3):82-84. 被引量:3
  • 9马春波,何大可.门限失败—停止签名[J].计算机工程与应用,2004,40(19):145-146. 被引量:4
  • 10C Blundo,A De Santisl * ,D R Stinson * et al.Graph Decompositions and Secret Sharing Schemes[C].In:Advances in Cryptology-EUROCRYPT '92,LNCS 658,1993 : 1-24.

二级参考文献17

  • 1[1]Brickell E F, Davenport D M. On the classification of ideal secret sharing schemes. J. Cryptology, 1991; (4): 123 ~ 134
  • 2[2]Dj Golic J. On matroid characterization of ideal secret sharing schemes.J. Cryptology, 1998; (11):75~86
  • 3[3]Blundo C, De Santis A, Crescenzo C D, et al. Multi - secret sharing schemes (extended abstract). Advances in Cryptoloy - CRYPTO' 94.LNCS, Vol 839, Springer-Verlag, 1995: 150~163
  • 4[4]Jackson W A, Marten K M, O' Keefe C M. Ideal secret sharing schemes with multiple secrets. J Cryptology, 1996; (9): 237 ~250
  • 5[5]Tompa M, Woll H, How to share a secret with cheaters. Journal of Cryptology, 1988; 1: 133~ 138
  • 6[6]Carpentieri M, De Santis A, Vaccaro U. Size of shares and probability of cheating in threshold schemes. In: Proc. Of Eurocrypto'92,Lecture Notes in Computer Science, LNCS 765, Springer Verlag,1993: 118~ 125
  • 7[7]Kurosawa K, Obana S, Ogata W, t -cheater identifiable (k, n)threshold secret sharing schemes. Proc. Of Crypt' 95, Lecture Notes in Computer Science, LNCS 963, Springer Verlag, 1995:410 ~ 423
  • 8[8]Ogata W, Kurosawa K. Optimum secret sharing schemes secure against cheating. Proc. Of Eurocrypt'96, Lecture Notes in Computer Science,LNCS 1070, Springer Verlag, 1996:200~211
  • 9[9]MacWilliams F J, Sloane N J A. The theory of error -correcting codes. North - Holland, 1981:397 ~ 398
  • 10[10]Beth T, Jungnickel T D, Lenz H. Design Theory. Cambridge University Press, 1993:260~264

共引文献4

同被引文献9

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部