摘要
论文对电子商务推荐技术进行了讨论,针对电子商务推荐技术存在的问题,提出了一种基于核估计的协作过滤方法,首先将推荐项的评分设定为其他人对推荐项评分的平均值,然后利用主成分分析进行降维,最后采用基于核估计的思想对推荐项进行预测评分。实验表明,该方法可以有效解决在用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,大幅提高推荐系统的推荐质量。
This article discusses recommendation technology about E-Commerce and aims at the problem of recommendation technology about E-Commerce.it gives a collaborative filtering method based on kernel estimation.This method first gives the rating of not rated item as the average rating and use primary component analysis to do dimensionality reduction,at last uses the method of kernel estimation to predict.The results of experiment show this method could efficiently improve the extreme sparsity of user rating data, provides better recommendation results.
出处
《计算机工程与应用》
CSCD
北大核心
2006年第5期207-209,共3页
Computer Engineering and Applications
基金
广东省科技攻关资助项目(编号:A10202001)
广州市科技攻关资助项目(编号:2004Z2-D0091)
关键词
电子商务
推荐系统
协作过滤
核估计
E-commerce, recommendation systems, collaborative filtering, kernel estimation