期刊文献+

基于优化BP神经网络的中子法检测煤中碳含量 被引量:4

Detection of Carbon Content in Coal with Neutron Method Based on an Optimized BP Neural Network
下载PDF
导出
摘要 介绍了中子法快速检测煤中碳含量的方法。基于遗传算法(GA)优化的BP神经网络建立了煤中碳含量的检测模型,并结合电厂锅炉燃烧用煤的实测数据进行模型的验证研究。结果表明,该方法对煤中碳含量的检测精度达到了0.5%。 The detection method of carbon content in coal with neutron method is introduced. The detection model of carbon content in coal based on BP neural network, which is optimized by genetic algorithms, is put forward. A study for verifying the model is made by comparison with the practical measured data of coal in power plant. The results show that the detection precision is 0.5 % with this model.
出处 《计量学报》 EI CSCD 北大核心 2006年第1期73-76,共4页 Acta Metrologica Sinica
基金 国家973计划(2002CB312200)
关键词 计量学 碳含量 遗传算法 BP神经网络 中子法 特征γ射线 Metrology Genetic algorithms; Carbon content BP neural network Neutron method Characteristic γ-ray
  • 相关文献

参考文献4

  • 1Vourvopoulos G. Industrial on-line bulk analysis using nuclear techniques[ J]. Nuclear Instruments and Methods in Physics Research, 1991, B56/57 : 917 - 920.
  • 2Clayton C G, Wirnakd M R. Multi-element analysis of coal during borehole logging by measurement of prompt γ-rays from thermal neutron capture[J]. J Appl Radiat lsot, 1983, 34(1): 83-93.
  • 3Salgado J, Oliveira C. Corrections for volume hydrogen content in coal analysis by prompt gamma neutron activation analysis [ J ]. Nuclear Instruments and Methods in Physics Research, 1992, 1166:465 - 469.
  • 4陈伯显,何景烨.中子感生瞬发γ射线煤多元素分析研究[J].核电子学与探测技术,1996,16(1):6-12. 被引量:19

共引文献18

同被引文献37

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部