期刊文献+

到近Hermitian流形的调和同态(英文)

Harmonic Morphisms into Almost Hermitian Manifolds
下载PDF
导出
摘要 设:M→N是从黎曼流形到近Hermitian流形的水平共形映射。以的dilation和N上的Lee形式表示的张力场,从而导出了判别为调和同态的准则。进一步给出了若干结构转移定理,其中之一为Watson型结果。 Let Ф:M→N be a horizontally conformal map from a Riemannian manifold M to an almost Hermitian manifold. The authors express the tension field of Ф in terms of the dilation of Ф and the Lee form of N, which lead to a test for Ф to be a harmonic morphism. Some results on transfer of structures involving a Watson type result are given.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期35-40,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(10171002)资助项目
关键词 调和merphism Lee形式 近Hennitian f结构 harmonic morphism Lee form ahnost Hermitian manifold f-structure
  • 相关文献

参考文献15

  • 1Baird P, Eells J. A Conservation Law for Harmonic Maps.Springer L N M, 1981,894 : 1-25.
  • 2Kause A, T Washio. Growth of Equivariant Harmonic Mapsand Harmonic Morphisms. Okasa J Math, 1990,27 : 899-928.
  • 3Mo X. The Geometry of Conformal Foliations and P-Harmonic Morphisms, Math Proc Camb Phil Soc,2003,321-334.
  • 4Gudmundsson S, Wood J C. Harmonic Morphisms between Almost Hermitian Manifolds. Boll U M I(7), 11-B,Suppl fase 1,1997(5) :30-58.
  • 5Baird P, Wood J C. Harmonic Morphisms between Riemannian Manifolds. London Mathematical Society Monographs (N S)(Oxford University Press), 2003.
  • 6Apostolov V, Gauduchon P. The Riemannian Goldberg-Sachs Theorem. Internat J Math, 1997,8:421-439.
  • 7Tricerri F, Vaisman I. On Some Two-Dimensional Hermition Manifolds. Math Z, 1996,192:205-216.
  • 8Kon M,Yano K. Structures on Manifolds. Volume 3 of: Series in Pure Mathematics, World Scientific, 1984. ix + 508.
  • 9Yano K. On a Structure Defined by a Tensor Field of Type(1,1) Satistying f^3 + f = 0, Tensor New Ser, 1963,14 : 99-109.
  • 10Loubeau E, Mo X. Pseudo Horizontally Weakly Conformal Maps from Riemannian Manifolds into Kaehler Manifolds,Contributions to Algebra and Geometry,2004,45:87-102.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部