摘要
基于文献[1]给出了一种数值证明变分不等式解的存在性方法。通过Hilbert空间中的Riesz表示定理,首先将变分不等式问题的迭代过程转化为一种不动点形式,再利用Schauder不动点定理构造了一个高效率的数值证明过程,即通过数值计算产生一个包含近似解的有界闭凸子集。非线性Helmholtz方程的算例说明这一方法的可行性和高效性。
In this paper, a numerical method to verify the existence of solutions for variational inequalities is presented. This method is based on the work of reference [1]. By using the Riesz present theory in Hilbert space, we first transform the iterative procedure of variational inequalities into a fixed point form. Then, using the Schauder fixed point theory, we construct a numerical verification method with high efficiency that through numerical computation generates a bounded, closed, convex set in which the approximate solution is included. Finally, a numerical example for nonlinear Helmholtz equation is presented.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2006年第1期40-45,共6页
Chinese Journal of Computational Mechanics
基金
兰州大学交叉学科青年创新研究基金(LZU200308)资助项目~~
关键词
变分不等式
不动点迭代
迭代解集
不动点定理
数值证明
variational inequality
fixed point iteration
iterative solution set
fixed point theorem
numerical verification