摘要
AIM: To elucidate the effect of p27^KIP1 on cell cycle and apoptosis regulation in gastric carcinoma cells. METHODS: The whole length of p27^KIP1 cDNA was transfected into human gastric cancer cell line SCG7901 by lipofectamine. Expression of p27^KIP1 protein or mRNA was analyzed by Western blot and RNA dot blotting, respectively. Effect of p27^KIP1 on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27^KIP1. Flow cytometry, TUNEL, and electron microscopy were used to assess the effect of p27^KIP1 on cell cycle and apoptosis. RESULTS: Expression of p27^KIP1 protein or mRNA increased evidently in SCG7901 cells transfected with p27^KIP1. The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55±0.14 cm vs 1.36±0.13cm, P〈0.01). p27^KIP1 overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%, P〈0.01) in G1 population. Prolonged p27^KIP1 expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy. CONCLUSION: p27^KIP1 can prolong cell cycle in G1 phase and lead to apoptosis, p27^KIP1 may be a good candidate for cancer gene therapy.
AIM: To elucidate the effect of p27KIP1 on cell cycle and apoptosis regulation in gastric carcinoma cells.METHODS: The whole length of p27KIP1 cDNA was transfected into human gastric cancer cell line SCG7901by lipofectamine. Expression of p27KIP1 protein or mRNA was analyzed by Western blot and RNA dot blotting,respectively. Effect of p27KIP1 on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27KIP1. Flow cytometry,TUNEL, and electron microscopy were used to assess the effect of p27KIP1 on cell cycle and apoptosis.RESULTS: Expression of p27KIP1 protein or mRNA increased evidently in SCG7901 cells transfected with p27KIP1. The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55±0.14 cm vs 1.36±0.13crn, P<0.01). p27KIP1 overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%,P<0.01) in G1 population. Prolonged p27KIP1 expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy.CONCLUSION: p27KIP1 can prolong cell cycle in G1phase and lead to apoptosis. p27KIP1 may be a good candidate for cancer gene therapy.