期刊文献+

基于HMT模型的图像去噪方法研究

Image denoising method based on hidden markov tree
下载PDF
导出
摘要 小波图像去噪已经成为图像去噪的主要方法之一。利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边缘信息,但现有的去噪声方法忽略了小波系数之间的相关性。针对这一不足,在小波域隐Markov树模型(HMT)的基础上给出了一种图像去噪新方法。实验结果表明,与普通的小波去噪方法相比,该方法不但可以保留图像的边缘信息,而且能提高去噪后图像的峰值信噪比。 Wavelet image denoising has been well acknowledged as an important method of image denoising, Although it can preserve edge information, present methods ignore relativity of wavelet coefficients. According to the deficiency, a new image denoising method was proposed based on hidden markov tree. Experimental results showed that, compared with the usual denoising method, the proposed method could keep images edges from damaging and increase PSNR.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第2期309-311,共3页 Computer Engineering and Design
关键词 小波变换 隐MARKOV树 图像去噪 小波阁值去噪 峰值信噪比 wavelet transform hidden markov tree (HMT) image denoising wavelet threshold denoising PSNR
  • 相关文献

参考文献6

  • 1张小义,陈东,韩晓广.基于线性和非线性混合滤波器的噪声抑制技术[J].计算机工程与设计,2004,25(9):1460-1462. 被引量:8
  • 2查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 3Crouse M S,Nowak R D,Baraniuk R G.Wavelet-based statistical signal processing using hidden markov models[J].IEEE Transactions on Signal Processing, 1998,46(4):886-902.
  • 4Merhav N, Parameter estimation of dependence tree models using the EM algorithm [J]. IEEE Signal Proc Lett, 1995,2(8):157-159.
  • 5Donoho D, Johnstone I. Adapting to unknown smoothness via wavelet shrinkage [J].J Amer Stat Assoc, 1995,90 (12): 1200-1224.
  • 6Lucke H.Which stochastic models allow Baum-Welch training[J]. IEEE Trans Signal Proc, 1996,11(11):2746-2756.

二级参考文献7

  • 1Lee J S.Digital image enhancement and noise filtering by use of local statistics[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1980, (2):286-294.
  • 2Kalman R E.A new approach to linear filtering and prediction problems[J].Trans on ASME, 1960, 82:35-45.
  • 3Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41:613 ~ 627.
  • 4Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[ J]. Biometrika, 1994,81: 425 ~ 455.
  • 5Chang S G, Yu B, Martin V. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000,9 ( 9 ): 1532 ~ 1546.
  • 6Stein C M. Estimation of the mean of a multivariate normal distribution[ J]. Annual Statistical, 1981,9(6): 1135 ~ 1151.
  • 7Yang Dali, Xu Mingxing, Wu Wenhu, et al. A noise cancerlation method based on wavelet transform [ A ]. In: International Symposium on Chinese Spoken Language rocessing [ C ], Beijing, 2000: 211 ~214.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部