期刊文献+

高黏性流动有限元模拟的迭代稳定分步算法 被引量:2

AN ITRATIVE STABILIZED FRACTIONAL STEP ALGORITHM FOR FINITE ELEMENT ANALYSIS IN HIGH-VISCOSITY FLUID FLOWS
下载PDF
导出
摘要 分步算法已被广泛应用于数值求解不可压缩N-S方程. Guermond等认为时间步长必须大于某个临界值方能使算法稳定.然而在高黏性流动模拟中,已有的显式和半隐式分步算法由于其显式本质,必须采用小时间步长计算,不但降低了计算效率,同时也常与为使分步算法稳定必须满足的最小时间步长要求冲突.本文目的是构造一种含迭代格式的分步算法,它能在保证精度的前提下大幅度地增大时间步长.方腔流和平面 Poisseuille流数值计算结果证实了此特点,该方法被有效应用于充填流动过程的数值模拟. Stabilized fractional step algorithm has been widely accepted for numerical solution of the incompressible N-S equations. Based on Guermond's works, the stability of the fractional step algorithm requires that the time step size should be larger than a critical value. However, in modeling of high-viscosity fluid flows, existing explicit and semi-implicit versions of the algorithm require to use smaller time step sizes due to their explicit nature, which reduces the efficiency of the numerical solution procedure and very often conflicts with the minimum time step size requirement presented to ensure the stability of the fractional step algorithm. The purpose of this paper is to present a modified version of the fractional step algorithm, which allows much larger time step sizes than those for the preceding ones. The method is based on introducing an iteration algorithm. Numerical experiments in the cavity flow and the plane Poisseuille flow problems demonstrate the improved performance of the proposed modified version of the fractional step algorithm, which is further successfully applied to numerical simulation of the polymer injection molding process with high efficiency.
出处 《力学学报》 EI CSCD 北大核心 2006年第1期16-24,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10272027 10590354 50278012)973(2002CB412709)资助项目.~~
关键词 分步算法 迭代过程 时间步长 高黏性 不可压缩黏性流动 fractional step algorithm, iteration procedure, time step size, high-viscosity, viscous incompressible flows
  • 相关文献

参考文献15

  • 1Chorin AJ.Numerical solution of the Navier-Stokes equations.Mathematics of Computation,1968,22:742~762
  • 2Armfield S,Street R.An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids.Int J Numer Methods Fluid,2002,38:255~282
  • 3Hawken DM,Tamaddon-Jahromi HR,Townsend P,et al.A Taylor-Galerkin-based algorithm for viscous incompressible flow.Int J Numer Methods Fluid,1990,10:327~351
  • 4Zienkiewicz OC,Codina R.A general algorithm for compressible and incompressible flow-part I:The split,characteristic-based scheme.Int J Numer Methods Fluid,1995,20:869~885
  • 5Fortin M,Peyret R,Temam R.Numerical solution of Navier-Stokes equations for an incompressible fluid.J Mec,1971,10(3):357~390
  • 6Kim J,Moin P.Application of a fractional-step method to incompressible Navier-Stokes equations.J Comp Phy,1985,59:308~323
  • 7Guermond JL.On stability and convergence of projection methods based on pressure poisson equation.Int J Numer Methods Fluid,1998,26:1039~1053
  • 8Li Xikui,Han Xianhong,Pastor M.An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics.Comp Methods Appl Mech Engrg,2003,192:3845~3859
  • 9Peyret R,Taylor TD.Computational Methods for Fluid Flow,New York:Springer-Verlag,1983,167~169
  • 10Zienkiewicz OC,Liu YC,Huang GC.Error estimates and convergence rates for various incompressible elements.Int J Numer Methods Engrg,1989,28:2191~2202

二级参考文献8

  • 1HARLOW F H, WELCH J E. Numerical study of large-amplitude free-surface motions [J]. Phys Fluids, 1966, 9(5) :842-851.
  • 2LUOMA J A, VOLLER V R. An explicit scheme for tracking the filling front during polymer mold filling [J]. Appl Math Modelling, 2000, 24(8-9):575-590.
  • 3HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian Eulerian computing method forall follow speeds [J]. J Comput Plays, 1974, 14(3):105-136.
  • 4BRAESS H, WRIGGERS P. Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow[J]. Comput Methods Appi Mech Eng, 2000,190(1-2): 95-109.
  • 5DUSSAN V E B. On the spreading of liquids on solid surface: static and dynamic contact lines [J]. Ann Rev Fluid Mech, 1979, 11:371-400.
  • 6LO S H, LEE C K. Generation of gradation meshes by the background grid technique [J]. Comput Struct, 1994, 50(1):21-32.
  • 7BUELL W R, BUSH B A. Mesh generation-a survey[J]. J of Eng for Ind, Trans of the ASME, 1973,95(1) : 332-338.
  • 8ZIENKIEWICZ 0 C, LIU Y C, HUANG G C.Error estimates and convergence rates for various incompressible elements [J]. Int J Numer Methods Eng, 1989, 28(9):2191-2202.

共引文献4

同被引文献2

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部