期刊文献+

三维空间中广义Davey-Stewartson系统整体解存在的最佳条件

Sharp Conditions of Global Existence for the Generalized Davey-Stewartson System in Three Dimensional Space
下载PDF
导出
摘要 根据基态的特征,用势井方法和凹方法证明了三维空间中广义Davey-Stewartson系统解爆破和整体存在的最佳条件.同时还证明了当初值为多小时,该系统的整体解存在. In terms of the characteristics of the ground state, a sharp condition for blowup and global existence of the generalized Davey-Stewartson system in three dimensional spaces is derived out by applying the potential well argument and the concavity method. Meanwhile, that how small the initial data are, the existence of the global solution is also shown.
作者 甘在会 张健
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第1期87-92,共6页 Acta Mathematica Scientia
基金 四川省教育厅青年基金(2005B023)资助
关键词 最佳条件 广义Davey-Stewartson系统 整体解 爆破 基态 Sharp condition Generalized Davey-Stewartson system Global existence Blowup Ground state.
  • 相关文献

参考文献11

  • 1Guo B L,Wang B X.The Cauchy problem for Davey-Stewartson systems.Commun Pure Appl Math,1999,52(12):1477-1490.
  • 2Cippolatii R.On the instability of ground states for a Davey-Stewartson system.Ann Inst Henri Poincare Phys Théor,1993,58:85-104.
  • 3Davey A,Stewartson K.On three-dimensional packets of surface waves.Proc R Soc,1974,338:101-110.
  • 4Ghidaglia J M,Saut J C.On the initial value problem for the Davey-Stewartson systems.Nonlinearity,1990,3:475-506.
  • 5Ohta M.Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in R^2.Ann Inst Henri Poincaré,1995,63:111-117.
  • 6Ohta M.Instability of standing waves for the generalized Davey-Stewartson system.Ann Inst Henri Poincaré,1995,62:69-80.
  • 7Berestycki H,Cazenave T.Instabilite des états stationnaires dans les equations de schrodinger et de Klein-Gordon non lineairees.C R Acad Sci,1981,293:489-492.
  • 8Berestycki H,Gallouet T,Kavian O.Equation de champs scalaires euclidiens nonlineaires dans le plan.C R Acad Sci,1983,297:307-310.
  • 9Ginibre J,Velo G.On a class of nonlinear Schrodinger equations.J Funct Anal,1979,32:1-71.
  • 10Ginibre J,Velo G.The global Cauchy problem for the nonlinear Schrodinger equation.Ann Inst H Poincare Anal Non Linéaire,1985,2:309-327.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部