摘要
Hardy空间上的复合算子的伴随算子具有很好的性质,但对一般情形而言,一直没有关于它的明确表达式.Cowen于1988年给出了(?)为D上的线性分式自映射情形时C*(?)的表达式,并且于2000年给出了n个变量情形的推广.他指出,正是由于没有一般情形的C*(?)的表达式,在很大程度上,阻碍了复合算子理论的发展.该文给出了Hardy空间上的复合算子伴随的准确表达式.
The adjoint operators of composition operators on Hardy space have nice properties. But in general, the exact representation has not been known. In 1988 Cowen got a representation of C^*φ when φ is linear fraction transformation in D. In 2000, he generalized the result to the case of n variables. He pointed out that one of the main difficulties in advancing a general theory of composition operators is that a nice representation of C^*φ is unknown. In this paper, the author gives exact representation of the adjoint of composition operator on Hardy space.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2006年第1期129-135,共7页
Acta Mathematica Scientia
关键词
复合算子
伴随
表达式
Composition operator
Adjoint
Representation