期刊文献+

加入动量项的改进盲分离算法 被引量:8

Improved Blind Separation Algorithm by Adding Momentum Term
下载PDF
导出
摘要 在盲信号分离算法的推导过程中,常采用最速下降法、自然梯度和牛顿法等对代价函数进行最小化,推导过程复杂.文中仿照在BP神经网络算法中加入动量项使算法得到改进这一方法,提出在互累积量迫零算法的推导中加入动量项.加入动量项的改进算法尽可能地保持了输出分量之间的独立,并在保持和原算法一样简单迭代的前提下,提高了收敛速度,且使训练避免陷入局部极小.仿真结果表明该算法的分离误差减小,能有效分离源信号. During the deduction of blind signal separation algorithms, the commonly adopted steepest descent method, natural gradient method and Newton' s method to minimize the contrast function may result in the complexity of the deduction. So, the momentum term is added in the derivation of the Cross-Cumulant-Zero-Forcing algorithm by imitating the addition of the momentum term in BP neural network to improve the algorithm, which keeps the independence of the outputs to the limit, and is of a higher convergence speed than the original algorithm with the same briefness. Moreover, the local minimization in training can be avoided. Simulated results indicate that the proposed algorithm is of little separation error and is helpful to the effective separation of source signal.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期6-9,共4页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金资助项目(04205783)
关键词 盲信号分离 代价函数 动量项 blind signal separation Contrast function momentum term
  • 相关文献

参考文献10

二级参考文献67

  • 1[1]Jutten C, Herault J. Blind separation of sources. Part Ⅰ. An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24:1~20.
  • 2[2]Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals [J]. IEEE Proceedings-F, 1993, 140(6):362~370.
  • 3[3]Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Transactions on Signal Processing, 1996, 44:3017~3030.
  • 4[4]Amari S, Cichocki A. Adaptive blind signal processing: neural network approaches [J]. Proceedings of the IEEE, 1998, 86(10):2026~2048.
  • 5[5]Cardoso J F. Blind signal separation: statistical principles [J]. Proceedings of the IEEE, 1998,86(10):2009~2025.
  • 6[6]Nikias C L, Raghuveer M. Bispectrum estimation: a digital signal processing framework [J]. Proceedings of the IEEE, 1987, 75(7):869~891.
  • 7[1]R Linsker. An application of the principle of maximum information preservation to linear systems[Z].Adv. Neural Inform. Process Systems, 1989,1.
  • 8[2]Jutten C,Herault J. Blind separation of sources,Part 1:An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24:1-10.
  • 9[3]Common P. Independent component analysis,a new concept? [J]. Signal Processing, 1994,36:287-314.
  • 10[4]A J Bell,T J Sejnowski. An information-maximisation approach to blind separation and blind deconvo--lution[J]. Neural Computation, 1995,7:1129 1159.

共引文献26

同被引文献43

  • 1毛建旭,王耀南.径向基函数神经网络的遥感图象分类[J].系统仿真学报,2001,13(S2):146-147. 被引量:5
  • 2王登峰,倪红卫.人工神经网络在转炉炼钢终点预报中的应用研究[J].钢铁研究,2005,33(2):27-31. 被引量:10
  • 3陈伟,冯斌,孙俊.基于QPSO算法的RBF神经网络参数优化仿真研究[J].计算机应用,2006,26(8):1928-1931. 被引量:23
  • 4陈伟,冯斌,孙俊.基于QPSO—RBF NN的混沌时间序列预测[J].计算机应用研究,2007,24(5):68-70. 被引量:7
  • 5周宗潭,董国华等译.芬兰Aapo Hyvarinen,Juha Karhunen,Erikki Oja著.独立成分分析[M].北京:电子工业出版社,2007.
  • 6Pajunen P, Hyvarinen A, Karhunen J. Nonlinear blind source separation by self-organizing maps[C]//Proceedings of the 1996 International Conference on Neural Information Processing. Hong Kong:[s. n. ],1996:1207-1210.
  • 7Woo W L,Sali S. Neural network schemes for blind separation of sources from nonlinear mixtures [C]//Proceedings in Systemics, Cybernetics and Informatics Conference. Florida, USA : [s. n.],2002:1227-1234.
  • 8Yang H H,Amari S, Cichocki A. Information back-propagation for blind separation of sources from non-linear mixtures[C]//Proceedings of the International Conference on Neural Networks. Houston, Texas,USA:[s. n. ],1997:2141-2146.
  • 9Woo W L,Dlay S S. Nonlinear blind source separation using a hybrid RBF-FMLP network[J]. IEEE Proceedings on Vision ,Image and Signal Processing,2005,152(2) : 173-183.
  • 10Hyvarinen A, Oja E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4-5): 411-430.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部