期刊文献+

用于状态估计的自适应粒子滤波 被引量:10

Adaptive Particle Filtration for State Estimation
下载PDF
导出
摘要 分析了粒子滤波的性能关键,提出了一种新的自适应粒子滤波算法.该算法采用一种新提议分布,即将UKF(Unscented Kalman Filter)与自适应强跟踪滤波器(STF)相结合.新提议分布通过UKF构造粒子群,而粒子群中的每个粒子中的每个sigma点用STF来更新,它可以在线调节因子而使得算法自适应.非线性状态估计仿真试验证实了改进的粒子滤波算法的有效性. This paper analyzes the keys for the performance of particle filter (PF) and presents a new adaptive PF algorithm. The algorithm adopts a new proposal distribution combining the unscented Kalman filter (UKF) with the adaptive strong tracking filter (STF). The new proposal distribution adopts UKF to produce the particles, in which each sigma point of every particle is updated by STF. Moreover, the added scaling factor can be adjusted on line to make the algorithm adaptive. Simulated experiments of nonlinear state estimation are finally carried out to confirm the validity of the improved PF algorithm.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期57-61,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50405017)
关键词 粒子滤波 状态估计 UKF 自适应滤波 强跟踪滤波器 particle filter state estimation unscented Kalman filter adaptive filtering strong tracking filter
  • 相关文献

参考文献9

  • 1Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[R].Oxfird:Department of Engineering Science,University of Oxford,1996.
  • 2Gordon N,Salmond D J,Smith A F M.Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J].IEE Proceedings-F,1993,140(2):107-113.
  • 3莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 4袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77
  • 5de Freitas J F G,Niranjan M,Gee A H,et al.Sequential Monte Carlo methods to train neural network models[J].Neural Computation,2000,12(4):955-993.
  • 6Van der Merwe R,de Freitas N,Doucet A,et al.The unscented particle filter[R].Cambridge:Department of Engineering,Cambridge University,2000.
  • 7周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报,1991,17(6):689-695. 被引量:192
  • 8Doucet A,Godsill S J,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 9Yaakov Bar-shalom,Li Xiao-rong.Estimation and tracking:principles,techniques,and software[M].Boston:Artech House,1993.

二级参考文献11

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25.
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995.
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356.
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com.
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997.
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com.
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000.
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,.
  • 10周东华,控制与决策,1990年,5卷,1页

共引文献285

同被引文献130

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部