期刊文献+

基于独特型网络动力学模型的人工免疫算法 被引量:9

Artificial Immune Algorithm Based on Idiotypic-Network Dynamic Model
下载PDF
导出
摘要 针对传统人工免疫算法中相似度、浓度以及抗体现有评价方式存在的缺陷,采用独特型网络动力学模型,通过改进亲和力计算方法,使之综合表达函数值和抗体相似程度的信息,以抗体的浓度作为适应值,提出了一种基于独特型网络动力学模型的人工免疫算法.仿真结果表明,这种算法对多模态函数优化是有效的,其搜索效率及收敛速度均优于常见的人工免疫网络算法Opt-aiNet. To overcome the demerits in evaluating the similarity, the concentration and the antibody of the conventional artificial immune algorithm, this paper proposes an improved artificial immune algorithm based on the idiotypic-network dynamic model by defining the antibody concentration as the fitness. In the proposed algorithm, the information about the function value and the similarity of antibody can be comprehensively extracted by modifying the calculation method of affinity. Simulated results show that the improved algorithm is effective on the optimization of multi-mode function and is of better searching efficiency and higher convergence speed than the conventional OptaiNet algorithm.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期62-65,72,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广州市科技攻关引导项目(2003Z3-D0091)
关键词 人工免疫算法 动力学模型 独特型网络 优化 artificial immune algorithm dynamic model idiotypic network optimization
  • 相关文献

参考文献10

  • 1Dipanker Dasguta.Artificial immune systems and their applications[M].Berlin:Spring-Verlag,1999.
  • 2葛红,毛宗源.免疫算法几个参数的研究[J].华南理工大学学报(自然科学版),2002,30(12):15-18. 被引量:31
  • 3郑日荣,毛宗源.一种改进的人工免疫算法[J].计算机工程与应用,2003,39(33):55-57. 被引量:19
  • 4Ishiguro A,Kondo T,Watanabe Y,et al.Emergent construction of artificial immune networks for autonomous mobile robots[C]//Prco of SMC' 97.Orlando,1997:1222-1228.
  • 5Toma N,Endo S,Yamanda,et al.Immune algorithm with immune network and MHC for adaptive problem solving[C]// Prco of IEEE SMC.Tokyo,1999:271-276.
  • 6de Castro L N,Timmis J.An artificial immune network for multimodal function optimization[C]// Proceedings of IEEE Congress on Evolutionary Computation.Honolulu,2002:699-704.
  • 7庄健,王孙安.基于人工免疫网络机器人路径规划算法的进一步研究[J].系统仿真学报,2004,16(5):1017-1019. 被引量:12
  • 8Jerne N K.The immune system[J].Scientific American,1973,229(1):52-60.
  • 9Farmer J,Packard N,Perelson A.The immune system,adaptation and machine learning[J].Physica,1986,D22:187-204.
  • 10de Castro L N,von Zuben F J.An evolutionary immune network for data clustering[C]// Proc of the IEEE SBRN.Rio de Janeiro,2000:84-89.

二级参考文献15

  • 1李伟.在未知环境中基于模糊逻辑的移动机器人行为控制[J].控制理论与应用,1996,13(2):153-162. 被引量:16
  • 2Dasgupta Dipankar. Nii Attoh-Okine. Immunity-based systems: a survey [A].In:Dasgupta Dipankar.Proc of the IEEE International Conference on Systems, Man,And Cybernetics [C].Orlando:IEEE Press,1997.12-15.
  • 3Forrest Stephanie,Hofmeyr Steven A.Immunology as information processing [A].In: Segel L A,Cohen I.Design Principles for the Immune System and Other Distributed Autonomous Systems [C].New York: Oxford University Press,2000.361-387.
  • 4Toyoo Fukuda,Kazuyudi Mori,Makoto Tsukiyama,et al.Parallel search for multi-modal function optimization [A].In:Dasgupta Dipankar.Artificial Immune Systems and Their Applications [C].New York:Springer-Verlag Berlin Heidelberg,1999,210-220.
  • 5Chun Jang-sung,Kim Min-Kyu,Jang Hyun-Kyo.Shape optimization of electromagnetic devices using immune algorithm [J].IEEE Trans on Magnetics,1997,33(2):1 876-1 879.
  • 6Chun Jang-Sung,Jang Hyun-Kyo,Hahn Song-Yop.A study on comparison of optimization performances between immune algorithm and other Heuristic algorithms [J].IEEE Trans on Magnetics,1998,34(5):2 972-2 975.
  • 7Roger L. King, Samuel H. Russ, Aric B. Lambert. An artificial immune system model for intelligent agents[J].Future Generation Computer Systems,2001,17:335-343
  • 8Steven H. Kleinstein and Philip E. Seiden.SIMULATING THE IMMUNE SYSTEM[J].Computer Simulations.2000,7:70-77.
  • 9Dawid HA. A Markov Chain Analysis of Genetic Algorithm with A State Dependent Fitness Function[J]. Complex Systems, 1994, 8:407-417.
  • 10Cox I J. Blanche. An experiment in Guidance and Gravitation of an Atuonomous Vechicle[J]. IEEE Trans on Robots and Autonomation, 1991, 7(2): 193-200.

共引文献54

同被引文献86

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部