摘要
分别在引入剪应力作为独立变量和引入剪应力和弯矩分别作为独立变量的基础上,将求解Reissner-Mindlin板问题的S1元作了一些改进,构造了两组Reissner-Mindlin元———CHRM(S1)及CHRM(0,S1),阐述了CHRM(S1)元和S1元的关系以及弯矩独立变量的引入对双线性元精度提高的促进作用.
Based on the introduction of shear stress as a independent variable, and the introduction of shear stress and moment as independent variables respectively, the authors improved the element S1 for the Reissner-Mindlin plate, proposed two plate elements--CHR (S1) and CHRM(0, S1 ), expatiated the relationship between CHRM(St) and S1 and the promotion action for the higher precision of the bilinear element by the introduction of moment independent variables.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第1期47-51,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(10201025)