期刊文献+

二部置换图的无圈控制集算法

Algorithm of Acyclic Dominating Set Problem on Bipartite Permutation Graphs
下载PDF
导出
摘要 设G=(V,E)为简单无向图,S V称为G的无圈控制集,如果S控制G并且导出子图〈S〉不含有圈.该文证明了二部置换图的无圈控制数等于其控制数(γa(G)=γ(G)),利用此结论证明了无圈控制集问题在二部置换图上具有线性时间求解算法. Let G = ( V, E) be a simple undirected graph, a subset S (真包含于) V is called an acyclic dominating set of G if S dominates G and the induced subgraph (S) contains no cycles. This paper shows that the acyclic domination number of a bipartite permutation graph is equal to its domination number, i.e.,γa ( G ) =γ(G). With this result it is shown that a linear time algorithm can be obtained to compute a minimumcardinality acyclic dominating set on bipartite pernutation graphs.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期14-18,共5页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10101010) 上海市重点学科建设资助项目 上海市教委青年科学基金资助项目(01QN6262)
关键词 二部置换图 控制集 无圈控制集 算法 bipartite permutation graph dominating set acyclic dominating set algorithm
  • 相关文献

参考文献9

  • 1Haynes T W,Hedetniemi S T,Slater P J.Fundamentals of domination in graphs[M].New York:Marcel Dekker,1998.299-325.
  • 2Haynes T W,Hedetniemi S T,Slater P J.Domination in graphs:advanced topics[M].New York:Marcel Dekker,1998.191-231.
  • 3Hedetniemi S M,Hedetniemi S T,Rail D F.Acyclic domination[J].Discrete Math,2000,222:151-165.
  • 4Spinrad J,Brandstadt A,Stewart L.Bipartite permutation graphs[J].Discrete Appl Math,1987,18:279-292.
  • 5Chao H S,Hsu F R,Lee R C T.An optimal algorithm for finding the minimum candinality dominating set on permutation graphs[J].Discrete Appl Math,2000,102:159-173.
  • 6Lu C L.Tang C Y.Solving the weighted efficient edge domination problem on bipartite permutation graphs[J].Discrete Appl Math,1998,87:203-211.
  • 7Lu C L.Tang C Y.Weighted effcient domination problem on some perfect graphs[J].Discrete Appl Math,2002,117:163-182.
  • 8Srinivasan A,Madhukar K,Nagavamsi P,et al.Edge domination on bipartite permutation graphs and cotriangulated graphs[J].Inform Process Lett,1995,56:165-171.
  • 9Brandstadt A,Spinrad J,Stewart L.Bipartite permutation graphs are bipartite tolerance graphs[J].Congr Numer,1987,58:165-174.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部