期刊文献+

基于概率神经网络的核保风险分析模型 被引量:5

Risk Analysis Model Based on Probabilistic Neural Network in Underwriting Area
下载PDF
导出
摘要 运用多元统计和概率神经网络的方法,结合实际研究项目,提出医疗保险中的核保风险分析模型.它是利用已知信息对投保人的患病风险以及属于何种风险类别进行分析和判别.其做法是首先对数据库用Kendall(tau-b)进行相关性检验,剔除导致疾病发生的相关性较小的因素,然后选取17 000条数据作为训练集,应用概率神经网络进行训练.训练完成后,选取另外1 000条数据作为测试集,检验预测结果.这种模型用MATLAB软件实现,具有可操作性,并可推广到相应的保险和金融等领域的风险分析问题中去. Based on multivariate statistic and probabilistic neural network method associated with a practical project, a risk analysis model in medical insurance is presented. According to the available information, the risk of disease and the type of risk can be tested and analyzed. The Kendall(tau-b) method for calculation of correlation between the factors and the disease is first used to eliminate factors of little relation of the disease. Secondly, 17 000 records in the database are chosen as a training set to build a probabilistic neural network model. Finally, 1 000 records are chosen as a testing set to test accuracy of the model. The model is implemented using MATLAB, and it can be generalized and applied to insurance and financial regions.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期40-44,65,共6页 Journal of Shanghai University:Natural Science Edition
基金 上海市重点学科建设资助项目
关键词 概率神经网络 Kendall(tau-h)检验 富裕性疾病 probabilistic neural network Kendall(tau-b) test disease related to better living conditions
  • 相关文献

参考文献11

  • 1莫剑冬,徐章遂,米东.应用概率神经网络诊断自行火炮发动机的故障[J].华北工学院测试技术学报,2000,14(1):7-11. 被引量:11
  • 2陈永灿,陈燕,郑敬云,高千红.概率神经网络水质评价模型及其对三峡近坝水域的水质评价分析[J].水力发电学报,2004,23(3):7-12. 被引量:30
  • 3Patra P K,Nayak M,Nayak S K,et al.Probabilistic neural network for pattern classification[A].Proceedings of the 2002 International Joint Conference on Neural Networks[C].2002,2:1 200-1 205.
  • 4Jin X,Srinivasan D,Ruey L C.Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks[J].IEEE Trans Neural Networks,2001,12(5):1 173-1 187.
  • 5许东 吴铮.基于MATLAB6,X的系统分析与设计[M].西安:西安电子科技大学出版社,2002.13-18.
  • 6郑祖康 马蓉 陈汉年.肥胖症的统计分析[A]..第六届全国概率统计学会论文[C].,1998..
  • 7Specht D F.Probabilistic neural networks for classification,mapping or associative memory[A].IEEE ICNN[C].San Dieg CA,1988,Ⅰ:525-532.
  • 8Karmiely H,Hava T S.Sensor registration using neural network[J].IEEE AES,2000,36(1):85-100.
  • 9Lin Whei-Min,Lin Chia-Hung,Sun Zheng-Chi.Adaptive multiple fault detection and alarm processing for loop system with probabilistic network[J].IEEE Transactions,2004,19(1):64-69.
  • 10Huang D S,Zhao W.A novel method for improving the classification capability of radial basis probabilistic neural network classifiers[A].Proceedings of the 2002International Joint Conference on Neural Networks[C].2002,1:102-106.

二级参考文献11

  • 1[3]Specht D F. Probabilistic neural networks[J]. Neural Networks, 1990, 1(3): 109~118.
  • 2[4]Raghu P P, Yegnanarayana B. Supervised texture classification using a probabilistic neural network and constraint satisfaction model[J]. IEEE Trans. on Neural Networks, 1998, 9(3): 516~522.
  • 3[5]Parzen E. On estimation of a probability density function and mode[J]. Ann. Math. Statist., 1962, 33(6):1065~1076.
  • 4Stambuk-Giljanovic N. Water Quality Evaluation by index in Dalmatia[ J]. Water Research, 1999,33 (16):3423 -3440.
  • 5Specht D F. Probabilistie neural networks for classification, mapping or associative memory[ J]. IEEE ICNN San Dieg CA. 1988, I:525 - 532.
  • 6Specht D F. Probabilistic neural networks[ A ]. Neural Networks[ C ]. Elsevier Science Ltd. Oxford, UK, 1990, (3): 109- 118.
  • 7GB3838-2002.中华人民共和国国家标准地面水环境质量标准[S].[S].,2002..
  • 8张欣莉,丁晶,李祚泳,金菊良.投影寻踪新算法在水质评价模型中的应用[J].中国环境科学,2000,20(2):187-189. 被引量:98
  • 9李祚泳,郭丽婷,欧阳洁.水环境质量评价的普适指数公式[J].环境科学研究,2001,14(3):56-56. 被引量:16
  • 10陈永灿,郑敬云,刘昭伟.三峡库区河段水质评价与分析[J].水利水电技术,2001,32(7):24-27. 被引量:7

共引文献65

同被引文献30

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部