摘要
利用数值方法研究了正交各向异性结构的塑性极限与安定下限分析问题。基于Hill-Tsai屈服准则和有限元离散技术,采用温度参数法构造了结构的自平衡应力场,建立了正交各向异性体极限与安定下限分析的有限元数学规划格式,利用序列二次规划算法求解。计算结果表明计算效率高,精度好。
A numerical method is presented for lower bound limit and shakedown analyses of orthotropic structures. The Hill's yield criterion is introduced into the static limit and shakedown theorem and using temperature parameter method is used to construct self-stress field. The finite element modeling is deduced into a nonlinear mathematical programming with inequality-constraint conditions, which can be solved by the Sequential Quadratic Programming method (SQP). Some examples are illustrated to show the application of the present approach.
出处
《工程力学》
EI
CSCD
北大核心
2006年第1期11-16,共6页
Engineering Mechanics
基金
国家自然科学基金资助项目(19902007)
全国优秀博士论文专项基金(200025)
国家"十五"重点科技攻关专题(2001BA803B03-05)