期刊文献+

原位反应自发渗透法TiC/AZ91D镁基复合材料及AZ91D镁合金的拉伸变形与断裂行为 被引量:18

Tensile Deformation and Fracture Behavior of AZ91D Magnesium Alloy and TiC/Mg Magnesium Matrix Composites Synthesized by in situ Reactive Infiltration Technique
下载PDF
导出
摘要 利用原位反应自发渗透技术合成了47.5%碳化钛TiC(体积分数,下同)增强AZ91D镁基复合材料,对比研究了该复合材料与铸态镁合金AZ91D基体的室温与高温拉伸变形行为,观察了拉伸断口微观组织形貌,并分析了这两种材料的断裂特征。结果表明,TiC/Mg复合材料具有良好的高温力学性能,在拉伸变形速率为0.001s-1以及温度为723K,时其拉伸强度可达91.1MPa,而此时相同变形条件下的铸态AZ91D镁合金拉伸断裂强度只有41.1MPa,增幅达120%;而在室温下,镁基复合材料的拉伸断裂强度仅高出基体铸态镁合金23.4%。镁基复合材料的断裂应变较低,高低温时均表现为脆性断裂;而镁合金则由室温下的脆性断裂向高温下的韧性断裂过渡。 A newly developed cost-effective processing route, in situ reactive infiltration technique, was utilized to fabricate 47.5vol.%TiC/AZ91D magnesium matrix composites. A comparative study was made on the tensile deformation behavior at room and elevated temperatures for the as synthesized composites and the matrix alloy magnesium AZ91D and their fracture characteristics were also analyzed as well. The results show that the TiC/Mg composites fabricated by in situ reactive infiltration process possess excellent high-temperature mechanical properties. The ultimate tensile strength of the matrix magnesium alloy AZ91D at 723 K and a strain rate of 0.001 s^-1 is 41.1 MPa, while that of TiC/Mg composites at the same deformation conditions increases by 120% and reaches 91.1 MPa. At room temperature, the ultimate tensile strength of the composites increases only by 23.4% as compared with the AZ91D alloy. The SEM observation of the morphologies for the fractured surfaces reveals that the fracture mode differs from one another in that the composites are of brittle characteristic at room and elevated temperatures due to its limited failure strain, whereas the fracture mode of the magnesium alloy has a transition from brittleness at room temperature towards ductileness at elevated temperature.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第1期29-33,共5页 Rare Metal Materials and Engineering
基金 中国科学院金属研究所新入所骨干人员科研启动基金 辽宁省自然科学基金(20032012) 教育部留学回国人员科研启动基金资助
关键词 镁基复合材料 碳化钛 原位反应渗透法 拉伸变形 断裂特征 magnesium matrix composites TiC in situ reactive infiltration process tensile deformation fracture behavior
  • 相关文献

参考文献14

  • 1Krishnadev M R,Angers R,Krishnadas Nair C G et al.JOM[J],1993,45(8):52.
  • 2Saravanan R A,Surappa M K.Mater Sci Eng[J],2000,A276(1~2):108.
  • 3Shen G J,Cai Y,Song J Z.JMatSciLett[J],1996,15:2058.
  • 4Ferkel H,Mordike B L.Mater Sci Eng[J],2001,A298(1~2):193.
  • 5Jiang Q C,Li X L,Wang H Y.Scripta Mater[J],2003,48(6):713.
  • 6Wang H Y,Jiang Q C,Li X L et al.Scripta Mater[J],2003,48(9):1349.
  • 7Omura N,Kobashi M,Choh T et al.J Japan Inst Metals[J],2002,66(12):1317.
  • 8Omura N,Kobashi M,Choh T et al.Mater Sci Forum[J],2002,(396~402):271.
  • 9陈礼清,董群,赵明久,毕敬.原位反应渗透法TiCp/Mg复合材料的制备和性能[J].材料研究学报,2004,18(2):193-198. 被引量:12
  • 10Dong Q,Chen L Q,Zhao M J et al.Mater Lett[J],2004,58(6):920.

二级参考文献11

  • 1郝元恺,赵恂,杨盛良,杨广平.纯镁对碳化硼颗粒的常压浸渗[J].复合材料学报,1995,12(3):12-16. 被引量:7
  • 2LIU Zheng, ZHANG Kui, ZENG Xiaoqin, Theoretical Fundamentals and its Applications of MagnesiumBased Light-Weight Alloys (Beijing, China Machine Press, 2002) p.229(刘正,张奎,曾小勤,镁基轻质合金理论基础及其应用(北京,机械工
  • 3SUN Zhiqiang, ZHANG Di, DING Jian, FAN Tongxiang, LU Weijie, Materials Science & Engineering, 20,579(2002)(孙志强,张获,丁剑,范同样,吕维洁,材料科学与工程,20,579(2002))
  • 4M.K.Aghajanian, N.H.Macmillan, C.R.Kennedy, J. Mater. Sci., 24, 658(1989)
  • 5M.K.Aghajanian, M.A.Rocazella, J.T.Burke, S.D.Keck, J. Mater. Sci., 26, 447(1991)
  • 6K.B.Lee, H.S.Sim, S.Y.Cho, H.Kwon, Mater. Sci. Eng., A302, 227(2001)
  • 7K.B.Lee, J.P. Ahn, H.Kwon, Metall. Mater. Trans., 32A, 1007(2001)
  • 8BIAN Tao, PAN Yi, CUI Yan, YI Xiaosu, Materials Review, 16, 21(2062)(边涛,潘颐,崔岩,益小苏,材料导报,16,21(2002))
  • 9S.C.Tjong, Z.Y.Ma, Materials Science and Engineering, R29, 49(2000)
  • 10N.Omura, M.Kobashi, T.Choh, N.Kanetake, J. Japan Inst. Metals, 66, 1317(2002)

共引文献11

同被引文献227

引证文献18

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部