期刊文献+

二维声子晶体的对称性对声学带隙的影响 被引量:5

Effect of Symmetry on Sonic Band-gap in Two-dimensional Phononic Crystals
下载PDF
导出
摘要 用平面波展开方法计算了正三、四、六、八棱柱体及圆柱体按正方点阵排列的二维水-水银声子晶体的声学带隙结构.首先研究了非圆柱体的旋转对带隙的影响,发现在给定的柱体和(较低的)填充率下带隙宽度的最大值和最小值均出现在晶体结构对称性最高时.通过调节柱体的方位,找出各填充率下的最宽带隙,结果表明:在水/水银系统中,带隙宽度随柱体对称性的提高而增大;在水银/水系统中,除正四棱柱晶体带隙最宽以外,情况正好相反. Using the plane-wave expansion method, we calculated the sonic band structures of two-dimensional water-mercury phononic crystals of regular triangle, quadrilateral, hexagon, octagon prisms and cylinders arrayed in square lattice respectively. Our study concerns the dependence of band gaps on rotation angle of the noncircular rods. And we found that, for each rod and (relatively small) filling fraction, both the maximum and minimum of band gap present in the case of the crystals' highest symmetry. By band gap for each filling fraction can be obtained adjusting the rods' orientation, the maximum of and, results show that for water/mercury system the width of band-gap increases with the heightening of rods' symmetry, while for mercury/water system the exact opposite is true except for the case of square rods, which produces the largest band-gaps.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2006年第1期29-34,共6页 Journal of Inorganic Materials
基金 广东省自然科学基金(032485 034794)广州市科技攻关项目
关键词 人工晶体 声子晶体 对称性 带隙 artificial crystal phononic crystals symmetry band gap
  • 相关文献

参考文献29

  • 1Sigalas M M,Economou E N.J.Sound Vib,1992,158 (2):377-382.
  • 2Kushwaha M S,et al.Phys.Rev.Lett,1993,71 (13):2022-2025.
  • 3Liu Z Y,et al.Science,2000,289:1734-1736.
  • 4Khelif A,et al.J.Appl.Phys,2003,94 (3):1308-1311.
  • 5快素兰,章俞之,胡行方.光子晶体的能带结构、潜在应用和制备方法[J].无机材料学报,2001,16(2):193-199. 被引量:18
  • 6快素兰,章俞之,胡行方.二氧化硅胶体晶体的制备及其光子带隙特性[J].无机材料学报,2002,17(1):159-162. 被引量:13
  • 7Economou E N,Sigalas M.J.Acoust.Soc.Am,1994,95 (4):1734-1740.
  • 8Vasseur J O,et al.J.Phys.Condens.Matter,1994,6:8759-8770.
  • 9Zhang X,et al.Phys.Lett.A,2003,313:455-460.
  • 10M.Kafesaki M,Sigalas M M,Economou E N.Solid State Commun,1995,96 (5):285-289.

二级参考文献24

  • 1[1]Yablonovitch E. Phys. Rev. Lett., 1987, 58: 2059-2062.
  • 2[2]John S. Phys. Rev. Lett., 1987, 58: 2486-2489.
  • 3[3]Joannopoulos J D, Villeneuve P R, Fan S. Nature, 1997, 386: 143-149.
  • 4[4]Lin S Y, Chow E, Hietala V, et al. Science, 1998, 282: 274-276.
  • 5[5]Campbell M, Sharp D N, Harrison M T, et al. Nature, 2000, 404: 53-56.
  • 6[6]Okubo T. Langmuir 1994, 10: 3529-3535.
  • 7[7]Vos W L, Sprik R, Blaaderen A, et al. Phys. Rev. B, 1996, 53(24): 16231-16233.
  • 8[8]Pradhan R D, Bloodgood J A, Watson G H. Phys. Rev. B, 1997, 55(15): 9503-9597.
  • 9[9]Busch K, John S. Phys. Rev. E, 1998, 58(3): 3896-3908.
  • 10[10]Vlasov Y A, Astratov V N, Karimov O Z, et al. Phys. Rev. B, 1997, 55(20): 13357-13360.

共引文献27

同被引文献49

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部